Protein Structure and Function

The structure of protein sets the foundation for its interaction with other molecules in the body and, therefore, determines its function. This article will cover the structural principles of proteins and how these can have an effect on the function of the protein.

Primary protein structure

Proteins are made up of a long chain of amino acids. Even with a limited number of amino acid monomers – there are only 20 amino acids commonly seen in the human body – they can be arranged in a vast number of ways to alter the three-dimensional structure and function of the protein. The simple sequencing of the protein is known as its primary structure.

Secondary protein structure

The secondary protein structure depends on the local interactions between parts of a protein chain, which can affect the folding and three-dimensional shape of the protein. There are two main things that can alter the secondary structure:

  • α-helix: N-H groups in the backbone form a hydrogen bond with the C=O group of the amino acid 4 residues earlier in the helix.
  • β-pleated sheet: N-H groups in the backbone of one strand form hydrogen bonds with C=O groups in the backbone of a fully extended strand next to it.

There can also be a several functional groups such as alcohols, carboxamines, carboxylic acids, thioesters, thiols, and other basic groups linked to each protein. These functional groups also affect the folding of the proteins and, hence, its function in the body.

Tertiary structure

The tertiary structure of proteins refers to the overall three-dimensional shape, after the secondary interactions. These include the influence of polar, nonpolar, acidic, and basic R groups that exist on the protein.

Quaternary protein

The quaternary protein structure refers to the orientation and arrangement of subunits in proteins with multi-subunits. This is only relevant for proteins with multiple polypeptide chains.

Proteins fold up into specific shapes according to the sequence of amino acids in the polymer, and the protein function is directly related to the resulting 3D structure.

Proteins may also interact with each other or other macromolecules in the body to create complex assemblies. In these assemblies, proteins can develop functions that were not possible in the standalone protein, such as carrying out DNA replication and the transmission of cell signals.

The nature of proteins is also highly variable. For example, some are quite rigid, whereas others are somewhat flexible. These characteristics also fit the function of the protein. For example, more rigid proteins may play a role in the structure of the cytoskeleton or connective tissues. On the other hand, those with some flexibility may act as hinges, springs, or levers to assist in the function of other proteins.

Protein functions

Proteins play an important role in many crucial biological processes and functions. They are very versatile and have many different functions in the body, as listed below:

  • Act as catalysts
  • Transport other molecules
  • Store other molecules
  • Provide mechanical support
  • Provide immune protection
  • Generate movement
  • Transmit nerve impulses
  • Control cell growth and differentiation

The extent to which the structure of proteins has an impact on their function is shown by the effect of changes in the structure of a protein. Any change to a protein at any structural level, including slight changes in the folding and shape of the protein, may render it non-functional.

References

  1. https://www.ncbi.nlm.nih.gov/
  2. http://genome.tugraz.at/MolecularBiology/WS11_Chapter03.pdf
  3. https://www.boundless.com/

Last Updated: Jul 19, 2023

Yolanda Smith

Written by

Yolanda Smith

Yolanda graduated with a Bachelor of Pharmacy at the University of South Australia and has experience working in both Australia and Italy. She is passionate about how medicine, diet and lifestyle affect our health and enjoys helping people understand this. In her spare time she loves to explore the world and learn about new cultures and languages.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Smith, Yolanda. (2023, July 19). Protein Structure and Function. News-Medical. Retrieved on January 06, 2025 from https://www.news-medical.net/life-sciences/Protein-Structure-and-Function.aspx.

  • MLA

    Smith, Yolanda. "Protein Structure and Function". News-Medical. 06 January 2025. <https://www.news-medical.net/life-sciences/Protein-Structure-and-Function.aspx>.

  • Chicago

    Smith, Yolanda. "Protein Structure and Function". News-Medical. https://www.news-medical.net/life-sciences/Protein-Structure-and-Function.aspx. (accessed January 06, 2025).

  • Harvard

    Smith, Yolanda. 2023. Protein Structure and Function. News-Medical, viewed 06 January 2025, https://www.news-medical.net/life-sciences/Protein-Structure-and-Function.aspx.

Comments

  1. Genesis Aylin Vis Araya Genesis Aylin Vis Araya Chile says:

    Que propiedad o nivel de organizacion de una proteina le permite llevar a acabo funciones especificas?


    What property or level of organization of a protein allows it to carry out specific functions?

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.