Copper could be used to inhibit swine flu

A leading microbiologist from the University of Southampton has told a conference that his research has found copper is effective in inhibiting the influenza A H1N1 virus.

Copper appears to have broad spectrum antiviral activity because it is also effective, not only against RNA-based influenza, but also against DNA-based adenovirus 40/41 which causes gastrointestinal infections.

Speaking at the BIT Life Sciences 2nd Annual World Summit on Antivirals in Beijing, China this week, Professor Bill Keevil, from the University’s School of Biological Sciences, added that he believed copper could be used to reduce the spread of flu in public places.

"With the ongoing threat of contamination by influenza A viruses, such as H1N1, there is a real and pressing need to utilise all appropriate and effective measures with proven antimicrobial qualities," commented Professor Keevil. "It is recognised that many infectious diseases are spread by hand contact and studies have now repeatedly shown that the use of copper as a surface material in key public places such as hospitals and food preparation areas offers the potential to substantially restrict and reduce the spread of harmful infection".

The influenza aspect of the study, completed in 2007, involved a series of experiments testing incubation of influenza A on copper and stainless steel surfaces. Results showed that, after incubation for 1 hour on copper, 75% of the virus was eradicated, and after 6 hours, less than 500 viral particles remained active (greater than 99.99% or 10,000-fold decrease). Similar inactivation rates have now been observed for adenovirus 40/41.

Professor Keevil added: "These public health benefits, supported by extensive antimicrobial efficacy testing, are underpinned by the fact that copper, brass and bronze are capable of killing a range of harmful and potentially deadly micro-organisms."

The study has contributed further to the understanding of copper’s antimicrobial qualities, which actively inhibit the growth of bacteria, fungi and viruses.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Review highlights failures in global control strategies for bird flu transmission