Scientists create new drug delivery system to treat cancer

Scientists in Syracuse University's Chemistry Department have created a new drug delivery system expected to advance the effectiveness of cancer-killing drugs. It uses gold nanoparticles with attached DNA that binds to a proven anti-cancer drug, Doxorubicin or DOX.

Preliminary tests indicate this delivery device has the potential to significantly improve the results of cancer chemotherapy. DOX is currently used against cancers of the breast, bone marrow, thyroid, bladder, ovary, small cell lung and several others.

"The possibilities of this new system are really exciting," says SU Professor James C. Dabrowiak. "For example, it would be easy to add to the device molecules that have the ability to target cancer cells. Another possibility is using light excitation to release high concentrations of an anti-tumor drug directly within the tumor."

These and other upgrades could enable clinics to focus chemotherapy more tightly on cancer cells and reduce negative side effects on healthy cells in other parts of the body.

A key element of the new system is that the DNA attached to the gold particles is engineered specifically to bind to the DOX anti-tumor drug. Studies show that the DOX can be transferred by diffusion to a receptor DNA molecule.

The gold nanoparticles have an average diameter of only 15.5 nanometers or a few billionths of a meter. A single nanoparticle presents more than 100 DOX sites and that, when multiplied by millions of the particles, could create a massive and deadly assault on a tumor.

"We believe this work can bring significant gains in the effectiveness of chemotherapy treatments," says Mathew M. Maye, SU Assistant Professor of Chemistry and co-inventor of the delivery system. "We still have work to do but this advance opens a promising new field of investigation that can lead to important new clinical tools."

A key advantage of the new system is that the DOX anti-tumor drug is already accepted by the FDA. Other such drugs may be deployed using this system simply by engineering the DNA to bind to a different drug molecule.

The Syracuse laboratory is continuing investigations to check the toxicity of the system. They will also explore "smart" particles capable of attaching to cancer cells and responding to triggers that will activate drug release. Prior discoveries demonstrate that such nano-delivery systems may be within reach and could help deliver large payloads of anti-tumor drugs where needed.

Source:

Syracuse University Office of Technology Transfer and Industrial Development

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Curcumin compound reactivates Epstein–Barr virus, offering safer cancer therapy