IUPUI professor earns CAREER award for improving machine learning technology

A computer science professor at Indiana University-Purdue University Indianapolis (IUPUI) has earned the prestigious CAREER Award from the National Science Foundation (NSF) to research ways to help computers actively adjust models and classify new data by enhancing machine learning technology.

Murat Dundar, Ph.D., assistant professor in the Department of Computer and Information Science, becomes the fourth faculty member in the School of Science at IUPUI actively working under an NSF CAREER Award. The award is the most prestigious honor given by the NSF in support of faculty members early in their careers who exemplify the role of teacher-scholars through outstanding research, excellent education and integration of education and research

Dundar will use the five-year, $500,000 award to continue to test theories related to machine learning, which traditionally is limited by the number of parameters or criteria a computer uses to classify data. In other words, a computer can only classify data (test results, biological samples, keyword indicators, for example) based on the training data set established at the beginning of an analysis. This oftentimes leads to misclassifications of data.

Dundar says this traditional method may not be accurate when you account for the continually evolving nature of data sets in many real-life situations.

His theory explores ways to refine how a computer actively and continually updates and adapts to the information it is collecting, thereby creating a more exhaustive set of categories by which to classify data. In essence, the computer is able to teach itself to recognize changes in the data and adjust accordingly.

"This new approach will let the data speak for itself in determining how many classes a computer can use," said Dundar, who specializes in machine learning and artificial intelligence applications in a biological or medical context.

Dundar, who earned his Ph.D. in electrical and computer engineering from Purdue University in West Lafayette, has several ongoing research projects encompassing areas such as computer-aided diagnosis and detection and bio-detection technology.

This new direction in machine learning will be applied to some of his current work, including research to determine new bacteria subclasses, mineral diversity on Mars and how to create a better method of sorting and classifying large collections of documents or records. His research has been supported by agencies such as the National Institute of Biomedical Imaging and Bioengineering and the National Institute of Allergy and Infectious Diseases.

The CAREER Award grant also includes an element of outreach associated with Dundar's research. He intends to organize a summer camp for K-12 students to introduce them to fundamental concepts in computer science and data mining and mentor student teams to compete in regional science fairs. He also hopes to organize a workshop on self-adjusting classification models at a premier machine learning conference.

Other School of Science faculty members conducting research under an NSF CAREER Award include Yogesh Joglekar, physics; Mohammad Al Hasan, computer science; and Greg Druschel, earth sciences.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Machine learning reveals sleep quality and anxiety as major predictors of depression