Researchers discover new approach to tackle global threat of antibiotic drug resistance

Discover chemical compounds that block the ability of bacteria to make vitamins and amino acids

Researchers at McMaster University are addressing the crisis in drug resistance with a novel approach to find new antibiotics.

"We have developed technology to find new antibiotics using laboratory conditions that mimic those of infection in the human body," said Eric Brown, professor in the Department of Biochemistry and Biomedical Sciences.

He is the lead author of the paper published in the online edition of Nature Chemical Biology today. Brown is also a member of the Michael G. DeGroote Institute for Infectious Disease Research (IIDR).

The findings report on the discovery of chemical compounds that block the ability of bacteria to make vitamins and amino acids, processes that are emerging as Achilles' heels for bacteria that infect the human body.

"The approach belies conventional thinking in antibiotic research and development, where researchers typically look for chemicals that block growth in the laboratory under nutrient-rich conditions, where vitamins and amino acids are plentiful," said Brown. "But in the human body these substances are in surprisingly short supply and the bacteria are forced to make these and other building blocks from scratch."

Brown's research group targeted these processes looking for chemicals that blocked the growth of bacteria under nutrient-limited conditions.

"We threw away chemicals that blocked growth in conventional nutrient-rich conditions and focused instead on those that were only active in nutrient-poor conditions," he said.

"We're taking fresh aim at bacterial vitamin and amino acid production and finding completely novel antibacterial compounds."

The approach and the new leads discovered by Brown's lab have potential to provide much-needed therapies to address the growing global threat of antibiotic drug resistance.

"When it comes to this kind of new drug discovery technology, Brown's group are fishing in a new pond," said professor Gerry Wright, director of the IIDR. "These leads have real prospects as an entirely new kind of antibacterial therapy."

Source: McMaster University

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
HNL Dimer as a promising biomarker for monitoring antibiotic treatment in sepsis