Esophageal cancer patients treated with proton therapy experience less toxic side effects

New research by scientists at the University of Maryland School of Medicine has found that esophageal cancer patients treated with proton therapy experienced significantly less toxic side effects than patients treated with older radiation therapies.

Working with colleagues at the Mayo Clinic in Rochester, Minnesota and the MD Anderson Cancer Center in Dallas, Texas, Michael Chuong, MD, an assistant professor of radiation oncology at the school, compared two kinds of X-ray radiation with proton therapy, an innovative, precise approach that targets tumors while minimizing harm to surrounding tissues.

The researchers looked at nearly 600 patients and found that proton therapy resulted in a significantly lower number of side effects, including nausea, blood abnormalities and loss of appetite. The results were presented on May 22 at the annual conference of the Particle Therapy Cooperative Group, held in San Diego.

"This evidence underscores the precision of proton therapy, and how it can really make a difference in cancer patients' lives," said Dr. Chuong.

Patients with esophageal cancer can suffer a range of side effects, including nausea, fatigue, lack of appetite, blood abnormalities and lung and heart problems. Proton therapy did not make a difference in all of these side effects, but had significant effects on several.

The results have particular relevance for the University of Maryland School of Medicine; this fall the school will open the Maryland Proton Treatment Center (MPTC). The center will provide one of the newest and highly precise forms of radiation therapy available, pencil beam scanning (PBS), which targets tumors while significantly decreasing radiation doses to healthy tissue. This technique can precisely direct radiation to the most difficult-to-reach tumors.

Proton therapy is just one of several new methods for treating cancer. Others include:

  • Selective Internal Radiation Therapy, a precision modality for treating patients with particularly difficult-to-remove tumors involving the liver such as those from colorectal cancers;
  • Gammapod, a new, high-precision, noninvasive method of treating early-stage breast cancer;
  • Thermal Therapies, the use of "heat" in treating a broad spectrum of malignancies.

The treatment works well for many kinds of tumors, including those found in the brain, esophagus, lung, head and neck, prostate, liver, spinal cord and gastrointestinal system. It is also an important option for children with cancer and is expected to become an important option for some types of breast cancer. While most cancer patients are well served with today's state-of-the-art radiation therapy technology, up to 30 percent are expected to have a greater benefit from the new form of targeted proton beam therapy.

Located at the University of Maryland BioPark, the 110,000 square-foot, $200 million center is expected to treat about 2,000 patients a year.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
How AI is advancing mammographic density-based breast cancer risk prediction