Researchers link AFD activity to sensory responses and behavior

When the surrounding environment makes us uncomfortable, we are inclined to move to a more agreeable one.

Studies have shown that animals do the same. They organize sequences of movements to migrate to preferred environments. Understanding how environmental information is converted to sensory information in the brain is vital for a deeper understanding of animal behavior and human perception. However, not much is known about this process.

The movement of Caenorhabditis elegans--or roundworm--in response to temperature changes has been extensively studied. Deletion of a pair of sensory neurons, known as AFD, severely hindered the worms' ability to react to an increase or decrease in temperature, indicating that AFD plays a crucial role in such responses.

Based on this knowledge, researchers from Nagoya University set out to investigate exactly how AFD converts the sequences of sensory inputs that are triggered by changing temperatures into neural activity.

"We used simultaneous calcium imaging and a tracking microscope for freely moving animals to characterize thermal response in C. elegans," first author of the study, Yuki Tsukada, explains. "The worms were raised in different temperatures, but were all subjected to the same temperature range of between 17°C and 23°C during the test."

The researchers found that the responses in the worms were similar regardless of the conditions they were raised in. Interestingly, the adaptation and detection of an input signal was around 20 seconds, a timescale comparable to that of behavioral movements, such as turning. Using a mathematical model, the researchers were able to reconstruct the AFD activity from the observed temperature input and, conversely, the thermal environment from the observed AFD activity and the migration pattern of the worms. This verifies that the thermotaxis of C. elegans is an appropriate model for exploring the relationship between the environment and the response of the organism.

"This modeling approach with the simple nervous system of C. elegans may allow us to conduct behavioral studies at different scales, from single cell organisms like bacteria to mammals," senior author of the study, Ikue Mori, says. "Such studies are extremely valuable in helping to understand the basis for animal behavior, including that of humans, in an ever-changing environment."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Neuroscience reveals how social rewards and relational value drive human connection