Researchers use reinforcement learning to train gliders to soar like birds

NewsGuard 100/100 Score

The words "fly like an eagle" are famously part of a song, but they may also be words that make some scientists scratch their heads. Especially when it comes to soaring birds like eagles, falcons and hawks, who seem to ascend to great heights over hills, canyons and mountain tops with ease. Scientists realize that upward currents of warm air assist the birds in their flight, but they don't know how the birds find and navigate these thermal plumes.

To figure it out, researchers from the University of California San Diego used reinforcement learning to train gliders to autonomously navigate atmospheric thermals, soaring to heights of 700 meters--nearly 2,300 feet. The novel research results, published in the Sept. 19 issue of Nature, highlight the role of vertical wind accelerations and roll-wise torques as viable biological cues for soaring birds. The findings also provide a navigational strategy that directly applies to the development of autonomous soaring vehicles, or unmanned aerial vehicles (UAVs).

"This paper is an important step toward artificial intelligence--how to autonomously soar in constantly shifting thermals like a bird. I was surprised that relatively little learning was needed to achieve expert performance," said Terry Sejnowski, a member of the research team from the Salk Institute for Biological Studies and UC San Diego's Division of Biological Sciences.

Reinforcement learning is an area of machine learning, inspired by behavioral psychology, whereby an agent learns how to behave in an environment based on performed actions and the results. According to UC San Diego Department of Physics Professor Massimo Vergassola and PhD candidate Gautam Reddy, it offers an appropriate framework to identify an effective navigational strategy as a sequence of decisions taken in response to environmental cues.

"We establish the validity of our learned flight policy through field experiments, numerical simulations and estimates of the noise in measurements that is unavoidably present due to atmospheric turbulence," explained Vergassola. "This is a novel instance of learning a navigational task in the field, where learning is severely challenged by a multitude of physical effects and the unpredictability of the natural environment."

In the study, conducted collaboratively with the UC San Diego Division of Biological Sciences, the Salk Institute and the Abdus Salam International Center for Theoretical Physics in Trieste, Italy, the team equipped two-meter wingspan gliders with a flight controller. The device enabled on-board implementation of autonomous flight policies via precise control over bank angle and pitch. A navigational strategy was determined solely from the gliders' pooled experiences collected over several days in the field using exploratory behavioral strategies. The strategies relied on new on-board methods, developed in the course of the research, to accurately estimate the gliders' local vertical wind accelerations and the roll-wise torques, which served as navigational cues.

The scientists' methodology involved estimating the vertical wind acceleration, the vertical wind velocity gradients across the gliders' wings, designing the learning module, learning the thermalling strategy in the field, testing the performance of the learned policy in the field, testing the performance for different wingspans in simulations and estimating the noise in gradient sensing due to atmospheric turbulence.

"Our results highlight the role of vertical wind accelerations and roll-wise torques as viable biological mechanosensory cues for soaring birds, and provide a navigational strategy that is directly applicable to the development of autonomous soaring vehicles," said Vergassola.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Neurological Narratives: A Journey into Women's Brain Health Research