Study shows how a drug-lead compound suppresses tumour formation

A team of scientists from the National University of Singapore's (NUS) Department of Biological Sciences and Mechanobiology Institute have discovered how a drug-led compound - a compound that is undergoing preclinical trials as a potential drug - can deprive cancer cells of energy and stop them from growing into a tumour. This drug-led compound is named BPTES.

This is the first time a research group has provided evidence showing how a drug-lead compound suppresses tumour formation.

Building on the new findings, the NUS team also derived positive results for a novel dual-drug treatment regime involving BPTES that kills kidney and breast cancer cells more effectively.

The team led by Associate Professor Low Boon Chuan and Associate Professor Jayaraman Sivaraman first published their findings in the journal of Proceedings of the National Academy of Sciences (PNAS) on 26 April 2012.

Killing cancer cells by 'starving' them of energy

Classic experiments in cancer biology have demonstrated that cancer cells feed off the breakdown of the amino acid glutamine to gain energy and grow into a tumour. While it is known that human glutaminase is the first enzyme in catalysing this series of biochemical reactions, little is known about how its activity is controlled, and how it can be manipulated.

The NUS research team has successfully identified the mechanism in which the BPTES that can bind and inhibit glutaminase, can effectively starve the cancer cells of their energy source, and hence, could potentially prevent tumour growth.

In addition, the team has also found that the glutaminase activity can be activated upon the addition of phosphate by epidermal growth factor signaling a pathway that controls cancer cells proliferation. By using another inhibitor to block the kinase Mek2 within this cancer-causing pathway, coupled with the use of BPTES, the combined therapeutic effect is more potent and less toxic. This raises the hope of offering a new dual-drug cancer treatment regime for cancers such as lymphoma, prostate, glioblastoma, breast and kidney cancer cells that is more effective and with less side effects.

The Next Step

Armed with structural insights into the binding and signaling pathway that activates glutaminase, the NUS research team is conducting more studies to determine whether a combination of drugs would be even more effective at inhibiting glutaminase activity and hence, tumour formation.

Using the knowledge that they gained through the current studies, the research team will also look into optimising the tumour suppression property of BPTES to increase its efficiency and lower its side-effects.

Comments

  1. K C Hong K C Hong United States says:

    Good luck to NUS.Hope you can finally find the cure for this frightening disease and give hope to millions of people around the world.
    HKC

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Modified bloodroot compound shows promise against multidrug-resistant tuberculosis