Proteostasis and Disease

Proteostasis or protein homeostasis is a cellular network essential for the strict control of protein synthesis, protein folding, maintenance of conformation, and protein degradation. Depending on the proteomic demands, the expression of the proteostasis network (PN) differs in cells and tissues.

Proteostasis Network

The different machineries that are part of the PN are translational machinery, molecular chaperones, co-chaperones, ubiquitin-proteasome system, as well as autophagy (lysosome) machinery. In addition, stress response pathways such as heat shock response (HSR) pathways and unfolded protein response (UPR) pathways are important PN modifiers. Auxiliary factors that are required for proteostasis are signaling pathways, metabolic factors, chromatin remodelers, transcription, and post-translational modification regulators.

Exposure to environmental irritants or stress, aging, or alteration of physiology are some factors that can alter the activity of PN. Loss or alteration of proteostasis can lead to the aggregation of nonnative proteins paving way for a host of diseases such as metabolic disorders, cardiac disease, neurodegeneration, mechanical injury, and cancer.

Proteostasis: Understanding protein homeostasis, understanding life

Effect of Protein Aggregation on the Proteostasis Pathways

Loss of proteostasis leads to protein aggregation that is responsible for dysregulation of the chaperone and co-chaperone levels. Studies have demonstrated that dysregulation of chaperones reduces the levels of soluble heat shock proteins (Hsp) such as Hsp 70, Hsp 90, and Hsp40 in mouse and nematode models of Alzheimer’s disease (AD). In addition, the aggregated proteins undergo ubiquitination that then accumulate in the brain tissue to cause inhibition of proteasome and neurotoxicity. The autophagic pathways are also inhibited by protein aggregation.

Apart from the disruptions caused to the different machineries of PN, cell culture studies show that these aggregated proteins have a tendency to spread. However, despite protein aggregation and spreading being a common feature in neurodegenerative diseases, the mechanism of internalization and transmission is extremely specific to each disease.

Protein Homeostasis: Therapeutic Strategies and Anti-Infective Medicines at UMass Amherst

Diseases and Their Link to Proteostasis

Defects or alteration in the proteostasis pathways are linked to a number of diseases.

Neurodegenerative diseases

The hallmark of neurodegenerative disease is protein aggregation. These aggregates are usually seen as detergent-insoluble inclusions in the nucleus and cytoplasm of the neurons. Although ATF6 and IRE1α are required for control of protein folding and degradation, they do play a role in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and AD. Post-mortem studies on human spinal cord from ALS cases and on the frontal and temporal cortex of AD cases reveal that the IRE1-XBP1 (X-box binding protein 1) and ATF6 target genes are activated in ALS and AD. This indicates that these target genes also have disease-specific patterns that can activate differential gene sets.

Cardiac diseases

Derailed proteostasis is also leads to various cardiac malfunctions. Cardiomyocytes are highly specialized proteins that require critical protein quality surveillance for their optimal function. These muscles also have a high metabolic demand because of which there is production of substantial amounts of proteotoxic agents, especially reactive oxygen species. In the event of absence of proteostasis, toxic, misfolded, and amyloid-like protein aggregates start accumulating. Aberration in the proteostasis function can also cause genetic mutations leading to cardiac diseases.

Cognitive impairment

Neutral sphingomyelinase phosphodiestrase-3 (SMPD3) is a stress-regulated gene found in the neurons of the brain. Studies conducted on mouse brain suggest that the absence of SMPD3 in the Golgi compartment of the brain neuron is linked to cognitive impairment. Proteostasis and lipid bilayer remodeling are affected when SMPD activity does not take place.

Hereditary skeletal disorders

Mutations in the type 1 procollagen genes gives rise to rare bone disorders. Studies have revealed that disruption in the proteostasis pathway is one of the many reasons for these disorders.

Rhodopsin retinitis pigmentosa

Mutations in rhodopsin, a rod visual pigment, is responsible for retinitis pigmentosa. This degenerative condition finally leaves the individual blind. In-depth characterization of the rhodopsin mutations have shown that the mutations can be divided into seven classes. Some of these mutations have been attributed to defects in protein folding and proteostasis disruption.

Inherited diseases, such as cystic fibrosis, cockyane syndrom are also caused due to defects in the multiple proteostasis pathways.

Introduction of high-throughput omics technologies in this field in combination with the study of structural and cross-link biochemistry can provide a novel approach to understand the differences in the mechanism of proteostasis in a healthy and diseased body. This data can be used to develop targeted gene therapy.

Sources

Further Reading

Last Updated: Feb 27, 2019

Deepthi Sathyajith

Written by

Deepthi Sathyajith

Deepthi spent much of her early career working as a post-doctoral researcher in the field of pharmacognosy. She began her career in pharmacovigilance, where she worked on many global projects with some of the world's leading pharmaceutical companies. Deepthi is now a consultant scientific writer for a large pharmaceutical company and occasionally works with News-Medical, applying her expertise to a wide range of life sciences subjects.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Sathyajith, Deepthi. (2019, February 27). Proteostasis and Disease. News-Medical. Retrieved on January 22, 2025 from https://www.news-medical.net/health/Proteostasis-and-Disease.aspx.

  • MLA

    Sathyajith, Deepthi. "Proteostasis and Disease". News-Medical. 22 January 2025. <https://www.news-medical.net/health/Proteostasis-and-Disease.aspx>.

  • Chicago

    Sathyajith, Deepthi. "Proteostasis and Disease". News-Medical. https://www.news-medical.net/health/Proteostasis-and-Disease.aspx. (accessed January 22, 2025).

  • Harvard

    Sathyajith, Deepthi. 2019. Proteostasis and Disease. News-Medical, viewed 22 January 2025, https://www.news-medical.net/health/Proteostasis-and-Disease.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Blood microRNAs can predict conversion from mild cognitive impairment to dementia due to Alzheimer’s disease