Transcranial Direct Current Stimulation

People have investigated brain stimulation since very early times, in ancient Rome torpedo fish were applied to the heads of some patients to relieve headaches, for instance, by their electrical currents. In 1802, Aldini of Italy applied electrical current to the exposed cortex of the human brain and attempted also to treat melancholia with a voltaic pile.

Human brain connected to cables and computer chips. Image Credit: Mopic / Shutterstock
Human brain connected to cables and computer chips. Image Credit: Mopic / Shutterstock

The voltaic pile led to accelerated interest in electrical brain stimulation to treat various disorders, including mental illness. The results were not always encouraging, of course, and it wasn’t until much later, in the middle of the 20th century, that direct current stimulation was used to alter the excitable patterns of the brain. This led to increased interest in using direct current to treat mania or depression. There was a brief upsurge in the use of electroconvulsive therapy to treat schizophrenia and other mental illnesses, but it came to an end in the last decade of the 20th century. Electrical stimulation of the brain became stigmatized and drug therapy took center stage as far as psychiatric treatment was concerned.

Recently, interest has arisen in electrical stimulation of the brain because of the finding that weak transcranial direct current stimulation (tDCS) of the brain produced changes in polarization and excitable thresholds of the neurons, which lasted long beyond the period of stimulation. This has led many to investigate the nature of the changes and the potential applications of this technique to major depressive disorder, schizophrenia, obsessive-compulsive disorder and other disorders of the mind with a basis in brain functioning.

Brain zap: transcranial direct current stimulation I The Feed

Transcranial Direct Current Stimulation Method

The technique of tDCS depends upon non-invasive stimulation of the brain through the skull, by a small constant current applied through scalp electrodes to the head. This leads to currents flowing through the superficial cortex. The strength of the current is so low that it does not directly cause an action potential in the brain neurons, and so instead regulates the excitability of the brain by making them more or less refractory to other endogenous stimulation according to the polarity of the electrodes. Anodal current is generally stimulatory by inducing increased excitability, but cathodal current reduces it. The effect of a single stimulus lasts for 30-120 minutes.

The way in which the current acts depends upon the polarity and the orientation of the cells. Anodal tDCS produces an inflow of current directed inwardly, which hyperpolarizes the apical dendrites of neurons in the pyramidal cortex, but depolarizes those of the somatic areas. Cathodal tDCS on the other hand leads to the reverse effect. The third factor determining the effect of the current is its dose. The strength of the electrical stimulation may lie between 0.5 and 2 mA, its duration is between 5-40 minutes, and the electrode size ranges from 3-100 cm. By altering these variables, it is possible to regulate the current density and total charge, but it may still be difficult to exactly quantify the total current delivered to the brain because of other factors outside the experimental field, such as scalp and cranial impedance.

The electrodes are placed in accordance with the international Electroencephalogram

System, so that one is on the scalp (the active electrode) and the other on the scalp (bipolar or bicephalic placement) or another part of the body, most commonly the upper arm or the shoulder (termed unipolar or monocephalic placement). The current traces a path from the anode, scalp, cranium, cortex, subcortical region, and cathode, stimulating not only the cortex but deeper structures, both in the deep brain and in the midbrain and spinal cord if unipolar placement is adopted. Secondly, the area stimulated is not confined to that near the electrodes because the current flows into adjoining regions in between and around the electrodes.

Mechanism of tDCS

Electrical stimulation with tDCS seems to produce a two-way modification of post-synaptic neuronal connections which results in the same effects as long-term potentiation or long-term depression of cortical excitability does. This is mediated through NMDA receptors. Glutamate antagonists prevent these long-term effects, while NMDAR agonists increase theiramplitude. Work is still going on as to whether repetitive tDCS could cause a more prolonged alteration of behavior. The stimulation has been found to change motor and emotional functioning, as well as sensory, attention-related, and cognitive responses. It is therefore likely to be useful in several psychiatric disorders. It has been found that glutamate antagonists abolish tDCS after-effects, while NMDA-agonists enhance them.

The Advantages and Disadvantages of tDCS

The technique of tDCS is easy to use, in fact, capable of application at home. It is noninvasive and inexpensive. No serious adverse effects have been noted so far. On the other hand, this very ease of use lends itself to a high potential for misuse, such as recreational use, unsupervised medical use, and unethical use as, for instance, to improve one’s attention span while studying. Its long-term effects are also not well established. Thus while the potential has long been recognized, the implementation of this technique is still not widespread pending proper regulation of its use worldwide.

Further Reading

Last Updated: Feb 26, 2019

Dr. Liji Thomas

Written by

Dr. Liji Thomas

Dr. Liji Thomas is an OB-GYN, who graduated from the Government Medical College, University of Calicut, Kerala, in 2001. Liji practiced as a full-time consultant in obstetrics/gynecology in a private hospital for a few years following her graduation. She has counseled hundreds of patients facing issues from pregnancy-related problems and infertility, and has been in charge of over 2,000 deliveries, striving always to achieve a normal delivery rather than operative.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Thomas, Liji. (2019, February 26). Transcranial Direct Current Stimulation. News-Medical. Retrieved on December 22, 2024 from https://www.news-medical.net/health/Transcranial-Direct-Current-Stimulation.aspx.

  • MLA

    Thomas, Liji. "Transcranial Direct Current Stimulation". News-Medical. 22 December 2024. <https://www.news-medical.net/health/Transcranial-Direct-Current-Stimulation.aspx>.

  • Chicago

    Thomas, Liji. "Transcranial Direct Current Stimulation". News-Medical. https://www.news-medical.net/health/Transcranial-Direct-Current-Stimulation.aspx. (accessed December 22, 2024).

  • Harvard

    Thomas, Liji. 2019. Transcranial Direct Current Stimulation. News-Medical, viewed 22 December 2024, https://www.news-medical.net/health/Transcranial-Direct-Current-Stimulation.aspx.

Comments

  1. TheBrainDriver tDCS TheBrainDriver tDCS United States says:

    Thank you Liji Thomas for writing this article! I will be sure to refer to it. As a manufacturer of tDCS Devices, I am often asked for information about the mechanisms of tDCS.

    - Alex
    TheBrainDriver tDCS Devices

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Deep brain stimulation may improve quality of life in Parkinsons disease