Understanding the Role of Epigenetics in Cancer

What is epigenetics?
Epigenetic changes in cancer
Epigenetics in cancer diagnosis
Epigenetics in cancer treatment
References
Further reading 


Epigenetics plays a vital role in cancer research, helping to understand the difference in nuclear organization, DNA methylation, and histone modification patterns between cancer cells and normal cells.

Image Credit: Juan Gaertner/Shutterstock.com

Image Credit: Juan Gaertner/Shutterstock.com

What is epigenetics?

Epigenetics is the study of the impact of human lifestyle and environmental factors on gene expression patterns. Epigenetic changes are dynamic and reversible and inherited somatically. These changes affect the expressions of genes without changing their sequence.

Epigenetic changes can "turn on" or "turn off" a gene through various mechanisms, including DNA methylation, histone modification, and non-coding RNA.

DNA methylation refers to the transfer of a methyl group to a specific position on the DNA to modulate the recruitment of proteins that are vital for initiating gene expression. Generally, methylation blocks gene expression, and unblocking is done through demethylation.    

Histones are chromosomal proteins wrapped by DNA. A tight packaging of histones prevents the access of gene expression-regulating proteins to DNA, inhibiting gene expression. A loose packaging of histones does the opposite action. Histone modification refers to adding or removing chemical groups from histone to regulate the tight or loose packaging of histones.

DNA sequences are transcribed to generate coding or non-coding RNA. While coding RNAs make proteins, non-coding RNAs control gene expression through various mechanisms.

Epigenetic changes in cancer 

Epigenetic changes affect human health in many ways. Infection with specific microbes can induce epigenetic changes, which can suppress the immune system's functions. Nutrition is another important factor responsible for epigenetic changes. A woman's nutrition during pregnancy can alter the epigenetics of the baby and can make them more susceptible to certain diseases.

Epigenetic changes are associated with cancer development and progression. However, the reversible nature and somatic inheritability pattern have made epigenetic changes potential therapeutic targets. In cancer research, epigenetics is vital in early-stage cancer diagnosis, cancer type detection, and novel therapeutic design.

In cancers, global DNA hypomethylation is accompanied by hypermethylation in other regions. While hypomethylation induces the expression of oncogenes (pro-cancer genes), hypermethylation suppresses the expression of tumor suppressor genes. Collectively, these processes lead to the initiation and development of cancer. 

Image Credit: Lightspring/Shutterstock.com

Image Credit: Lightspring/Shutterstock.com

Epigenetic changes are also associated with cancer prognosis. Lower levels of histone post-translational modifications (methylation or acetylation) are associated with poor outcomes in prostate, lung, and kidney cancers. In contrast, higher levels of a specific histone modification (H3K9ac) are associated with lower survival in lung cancer.

MicroRNAs (miRNAs) are a type of non-coding RNA that bind to target mRNAs to inhibit their translation and subsequent protein synthesis. Since miRNAs play a vital role in gene expression regulation, any changes in their structure and function can lead to disease onset. Some miRNAs which exhibit oncogenic functions are called onco-miRs.

A reduction in miR-101 expression has been observed in many cancer types. This leads to increased expression of an enzyme responsible for histone methylation. Such induction in methylation in tumor suppressor genes can increase the risk of cancer development.      

Epigenetics in cancer diagnosis

Early and accurate cancer detection is the major step toward successful cancer treatment. Targeted methylation sequencing is a promising approach that works by detecting abnormal methylation patterns associated with cancer development. The detection of promoter hypermethylation has gained considerable attention in cancer diagnosis.

Histone modification is another potential epigenetic biomarker used in cancer diagnosis. Detection of abnormal post-translational modifications in histones is an emerging approach for cancer diagnosis and outcome predictions. In lung cancer, specific histone modifications, such as lower H3 and H4 methylation levels, have been found to associate with poor prognosis and mortality.

miRNA methylation is a novel epigenetic biomarker in different cancers, including lung cancer. Hypermethylation of miR-124a and MiR-29 has been found to associate with poor prognosis in lung cancer.

Epigenetics in cancer treatment 

Combined epigenetic therapies have shown promising outcomes in treating cancer patients, as tumorigenesis is associated with many epigenetic changes. Specific genetic and epigenetic changes associated with tumorigenesis should be accessed in each patient to get the highest benefits from these therapies.

In bladder cancer, the expression of tumor suppressor genes is inhibited by the polycomb repressive complex or de novo DNA methylation. Polycomb repressive complex-mediated suppression of expression can be treated with inhibitors of histone methyltransferase enzyme. Similarly, de novo DNA methylation can be blocked by inhibitors of DNA methylation.

Epigenetics & Cancer: The Other Side of the Coin

These epigenetic therapeutics can be combined with conventional chemotherapy to increase treatment efficacy. A combination of chemotherapy and epigenetic drugs has been found to reduce the growth of highly aggressive relapsed and refractory cancers, such as diffuse large B cell lymphoma. Epigenetic drugs also help increase the sensitivity of cancer cells to chemotherapy.

Cytotoxicity induced by high-dose chemotherapy can trigger epigenetic changes in cancer cells, such as DNA methylation and histone acetylation. This can lead to drug resistance. Treatment with inhibitors of these epigenetic processes can remove drug resistance and improve cancer prognosis.

References

Further Reading

Last Updated: Sep 23, 2024

Dr. Sanchari Sinha Dutta

Written by

Dr. Sanchari Sinha Dutta

Dr. Sanchari Sinha Dutta is a science communicator who believes in spreading the power of science in every corner of the world. She has a Bachelor of Science (B.Sc.) degree and a Master's of Science (M.Sc.) in biology and human physiology. Following her Master's degree, Sanchari went on to study a Ph.D. in human physiology. She has authored more than 10 original research articles, all of which have been published in world renowned international journals.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Dutta, Sanchari Sinha Dutta. (2024, September 23). Understanding the Role of Epigenetics in Cancer. News-Medical. Retrieved on December 22, 2024 from https://www.news-medical.net/health/Understanding-the-Vital-Role-of-Epigenetics-in-Cancer.aspx.

  • MLA

    Dutta, Sanchari Sinha Dutta. "Understanding the Role of Epigenetics in Cancer". News-Medical. 22 December 2024. <https://www.news-medical.net/health/Understanding-the-Vital-Role-of-Epigenetics-in-Cancer.aspx>.

  • Chicago

    Dutta, Sanchari Sinha Dutta. "Understanding the Role of Epigenetics in Cancer". News-Medical. https://www.news-medical.net/health/Understanding-the-Vital-Role-of-Epigenetics-in-Cancer.aspx. (accessed December 22, 2024).

  • Harvard

    Dutta, Sanchari Sinha Dutta. 2024. Understanding the Role of Epigenetics in Cancer. News-Medical, viewed 22 December 2024, https://www.news-medical.net/health/Understanding-the-Vital-Role-of-Epigenetics-in-Cancer.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
AI-powered blood test promises early detection of ovarian cancer