Analyzing Neuroimmune Cell Populations Using Flow Cytometry

The interaction between cells in the central nervous system and immune cells are key in neuroinflammation, and play a role in the survival of neurons during neuropathology. Flow cytometry is a technique that enables the separation of cells from a mixed population.

flow cytometryImage Credit: mh_enders / Shutterstock.com

By using a digestion protocol, researchers were able to optimize the yield of these cells which could then be analyzed by flow cytometry and allow for both neural cells and leukocytes.

How do you study neuroimmune cells?

Studies have shown that microglia and astrocytes in the brain alongside leukocytes from the bloodstream are key cells in neuroinflammation, and are a factor in the survival of neurons in certain neuropathologies. These range from in vitro studies involving the use of cell lines, as well as using primary glial or astrocyte cultures.

While this does provide information on the function of these cells in certain situations, this does not provide information on how these cells interact with each other and with other cells (such as leukocytes) that enter the central nervous system.

With an in vivo approach, it would be ideal to isolate cell populations from the brain, this is not easily achieved. This is due to the fact that central nervous system tissue needs to be made into a single cell suspension.

Can you study a multiple sclerosis disease model using flow cytometry?

Another challenge that Legroux et al. wanted to address was identifying neural cells and leukocytes at the same time. To achieve this, the authors investigated various methods of preparing murine central nervous system tissue before analyzing the resulting suspension by flow cytometry. For this, they utilized a disease model of multiple sclerosis, experimental encephalomyelitis, in mice.

The experimental encephalomyelitis was induced in mice, and then the central nervous system tissue was isolated using a variety of “digestion mixes”; the authors found that the most effective mix included enzymes such as collagenase and DNase. The digestion was carried out for 15 minutes at 37°C.

After the digestion, the central nervous system suspension was placed in a separation mixture made of Percoll™; this is colloidal silica coated with polyvinylpyrrolidone. This was either a gradient of varying concentration, or a single concentration. The combined central nervous system suspension and separation mixture was then centrifuged for 10 mins without using brakes.

This allowed the myelin and debris from the central nervous system suspension to be separated from the cells. The authors found that using the single concentration of the separation mixture resulted in more cells being recovered from the central nervous system suspension.

Finally, the authors used fluorescently labeled antibodies to identify specific cell types within the central nervous system suspension.

Previous studies had revealed that there is an influx of leukocytes during experimental encephalomyelitis, therefore the authors wanted to see if the above flow cytometry protocol could be used to study differences in the cell populations found in mice with experimental encephalomyelitis compared to mice without the disease.

The protocol revealed that there was an increase in leukocytes in mice with experimental encephalomyelitis, therefore this protocol was able to successfully recover neural cells and leukocytes and reveal differences in the numbers found.

Are there differences in adult and neonatal mice?

Calvo et al. used a similar protocol to Legroux et al. to separate the cellular components of the murine central nervous system. Here, they utilized non-enzymatic dissociation or an enzymatic digestion mix containing DNase, papain and dispase, alongside the same separation mixture.

Interestingly, the authors found that the digestion process had different efficiency depending on the age of the mouse; papain was more efficient for digesting neonatal central nervous system tissue, while non-enzymatic dissociation and dispase was more effective at digesting adult central nervous system tissue.

Using flow cytometry to investigate neuroinflammation after brain injury

It is known that after a traumatic brain injury, neurons can still be damaged by a process known as “chronic/secondary degeneration”. This is a poorly understood process, with consequences for cognitive function. While studies have shown that neuroinflammatory processes occur at the time of traumatic brain injury, it is unknown whether this contributes to chronic degeneration.

Ertürk and co. set out to investigate whether neuroinflammation played a role in chronic degeneration by using a mouse model of traumatic brain injury. As a part of this study, the authors used flow cytometry to analyze the influx of leukocytes after the traumatic brain injury.

The preparation of the central nervous system tissue was similar to the processes used in the studies described above; briefly, enzymatic and non-enzymatic methods were used to disrupt the central nervous system tissue, then this was placed in the same separation mixture. This study used a concentration gradient of the separation mixture rather than a single concentration. The resulting suspension was then labeled with antibodies.

When the cell suspension was analyzed, the authors found elevated levels of lymphocytes 7 days after the traumatic brain injury. This was also seen 4 months after the traumatic brain injury. When analyzed further, it was revealed that the initial lymphocyte population had increased T-helper cells and natural killer cells when compared to the lymphocyte population at 4 months.

Sources

Legroux, L. et al. (2015) An optimized method to process mouse CNS to simultaneously analyze neural cells and leukocytes by flow cytometry. Journal of Neuroscience Methods https://doi.org/10.1016/j.jneumeth.2015.03.021

Calvo, B. et al. (2020) Dissociation of neonatal and adult mice brain for simultaneous analysis of microglia, astrocytes and infiltrating lymphocytes by flow cytometry. IBRO Reports https://doi.org/10.1016/j.ibror.2019.12.004

Ertürk, A. et al. (2016) Interfering with the Chronic Immune Response Rescues Chronic Degeneration After Traumatic Brain Injury. The Journal of Neuroscience https://doi.org/10.1523/JNEUROSCI.1898-15.2016

Further Reading

Last Updated: Dec 21, 2020

Dr. Maho Yokoyama

Written by

Dr. Maho Yokoyama

Dr. Maho Yokoyama is a researcher and science writer. She was awarded her Ph.D. from the University of Bath, UK, following a thesis in the field of Microbiology, where she applied functional genomics to Staphylococcus aureus . During her doctoral studies, Maho collaborated with other academics on several papers and even published some of her own work in peer-reviewed scientific journals. She also presented her work at academic conferences around the world.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Yokoyama, Maho. (2020, December 21). Analyzing Neuroimmune Cell Populations Using Flow Cytometry. News-Medical. Retrieved on January 20, 2025 from https://www.news-medical.net/life-sciences/Analyzing-Neuroimmune-Cell-Populations-Using-Flow-Cytometry.aspx.

  • MLA

    Yokoyama, Maho. "Analyzing Neuroimmune Cell Populations Using Flow Cytometry". News-Medical. 20 January 2025. <https://www.news-medical.net/life-sciences/Analyzing-Neuroimmune-Cell-Populations-Using-Flow-Cytometry.aspx>.

  • Chicago

    Yokoyama, Maho. "Analyzing Neuroimmune Cell Populations Using Flow Cytometry". News-Medical. https://www.news-medical.net/life-sciences/Analyzing-Neuroimmune-Cell-Populations-Using-Flow-Cytometry.aspx. (accessed January 20, 2025).

  • Harvard

    Yokoyama, Maho. 2020. Analyzing Neuroimmune Cell Populations Using Flow Cytometry. News-Medical, viewed 20 January 2025, https://www.news-medical.net/life-sciences/Analyzing-Neuroimmune-Cell-Populations-Using-Flow-Cytometry.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.