Micro-PET Principles, Strengths, and Weaknesses

Positron emission tomography (PET) is a nuclear imaging tool for molecular and functional imaging of biological processes. While functional imaging is used to monitor parameters such as perfusion and metabolic rate, molecular imaging is done to study and measure cellular events like gene expression and receptor binding.

The miniaturized version of PET called the micro-PET is used in small animal imaging. The development of micro-PET imaging has opened up new possibilities for non-invasive and repetitive imaging of small animals in preclinical studies.

With the development of new probes and reporter genes, the applications of micro-PET in research studies focusing on enzyme activity, protein-protein interactions, metabolism, and gene expression has been enhanced. Also, the results of small animal PET imaging is extrapolatable and can be easily translated to the clinic. Micro-PET can reduce the number of animals needed for experiments by allowing non-invasive and serial studies.

Principles of micro-PET

PET imaging involves detection of photons generated by the sample tissue as a result of a process called positron decay. The sample is injected with radio-labeled biomolecules. With decay of the radioisotopes, the sample emits positrons that destroy electrons present in the sample, thus producing high-energy gamma rays. PET systems have detectors that pick up these gamma rays and the data collected can be reconstructed to produce high-resolution images of the sample.

Applications of micro-PET

  • Molecular and functional micro-PET imaging is highly useful in neurology, oncology, and cardiology
  • Clinical uses of micro-PET include estimating enzyme reactions, interactions between ligand and receptor, cell proliferation, and cellular metabolism.
  • Advanced applications of micro-PET such as in Alzheimer’s disease pathophysiology or therapeutics are still at an early stage. The technique is currently being used to enhance in vivo Alzheimer’s disease diagnosis, monitoring propagation of the disease, and advancing clinical trials of the disease.
  • The technique is being used for accelerating radiopharmaceuticals development

Strengths of micro-PET

  • Micro-PET offers excellent depth of imaging as the source of radiation is introduced into the sample
  • It provides good, in vivo measurements of metabolic pathways and target tissues deep inside the body
  • Micro-PET’s acquisition time is very fast
  • The technique offers precise quantitative analysis of radiolabeled biomolecules
  • It enables small animals to act as their own controls, thus minimizing the number of animals required for study
  • The technique is very sensitive to different biological tissues as they intake the radioisotopes at different rates.

Weaknesses of PET imaging

  • Volumetric differences between tissues in small animals and humans pose huge challenges in PET imaging.
  • Half-lives of radioisotopes used in this technique are very short and hence cyclotrons may need to be present with the experimental apparatus for constant generation of these isotopes
  • Use of radiation can be harmful to small animals
  • Radiation also alters the size of the tumor in cancer research studies and thus additional control groups may be required
  • Spatial resolution offered by micro-PET is not very good
  • It often needs to be combined with other tools such as micro-MRI or CT to achieve a well rounded study involving both anatomical and molecular imaging. This increases the cost as well as the need for specialized facilities.

References

  1. MicroPET imaging and transgenic models: a blueprint for Alzheimer's disease clinical research, https://www.ncbi.nlm.nih.gov/pubmed/25151336
  2. Micro-PET imaging and small animal models of disease, https://www.ncbi.nlm.nih.gov/pubmed/12900267
  3. Preclinical Imaging https://en.wikipedia.org/wiki/Preclinical_imaging
  4. Positron Emission Tomography: applications in drug discovery and drug development, https://www.ncbi.nlm.nih.gov/pubmed/16181131
  5. Small Animal PET Imaging, http://ilarjournal.oxfordjournals.org/content/49/1/54.full

Further Reading

Last Updated: Feb 26, 2019

Susha Cheriyedath

Written by

Susha Cheriyedath

Susha is a scientific communication professional holding a Master's degree in Biochemistry, with expertise in Microbiology, Physiology, Biotechnology, and Nutrition. After a two-year tenure as a lecturer from 2000 to 2002, where she mentored undergraduates studying Biochemistry, she transitioned into editorial roles within scientific publishing. She has accumulated nearly two decades of experience in medical communication, assuming diverse roles in research, writing, editing, and editorial management.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Cheriyedath, Susha. (2019, February 26). Micro-PET Principles, Strengths, and Weaknesses. News-Medical. Retrieved on January 20, 2025 from https://www.news-medical.net/life-sciences/Micro-PET-Principles-Strengths-and-Weaknesses.aspx.

  • MLA

    Cheriyedath, Susha. "Micro-PET Principles, Strengths, and Weaknesses". News-Medical. 20 January 2025. <https://www.news-medical.net/life-sciences/Micro-PET-Principles-Strengths-and-Weaknesses.aspx>.

  • Chicago

    Cheriyedath, Susha. "Micro-PET Principles, Strengths, and Weaknesses". News-Medical. https://www.news-medical.net/life-sciences/Micro-PET-Principles-Strengths-and-Weaknesses.aspx. (accessed January 20, 2025).

  • Harvard

    Cheriyedath, Susha. 2019. Micro-PET Principles, Strengths, and Weaknesses. News-Medical, viewed 20 January 2025, https://www.news-medical.net/life-sciences/Micro-PET-Principles-Strengths-and-Weaknesses.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Brain aging may hold the key to predicting Alzheimer’s risk