Microbes and Climate Change

Climate change impacts many aspects of our lives and almost every environment on earth. Industrial activity is widely accepted to be the main driving force behind this. The presence of microbes and their role in the climate is of paramount concern to scientists working in the field of climate science. Knowledge of this “unseen majority” is vitally important to fully understand their function and how they can be used in technological applications that combat climate change itself.

Climate Change

Image Credit: Siyapath/Shutterstock.com

Micro-organisms and the Environment

Micro-organisms are involved in many environmental processes including the nitrogen and carbon cycle. They are abundant in nearly all environments including the air, soil, the abyssal depths of the ocean, deep underneath the Earth’s surface, and in environments that range widely in temperature, pressure, and chemical composition. It is estimated that there is something in the region of ~1030 total bacteria and archaea on Earth.

Microbes play an important role in the production and consumption of powerful greenhouse gases including CO2 and methane, have negative and positive feedback responses to temperature changes, and play a vital function in the regulation of ocean acidity. All of these can suffer perturbations due to anthropogenic climate change. They also have important functions in agriculture and the food web.

Loss of habitat and the biodiversity of animal and plant species and communities is relatively well-publicized. However, the role of microbial communities is still poorly understood as they live in diverse communities that interact with the environment and other organisms in a complex way. Therefore, including microbial activity in climate models is gaining prominence in the field of climate science.

Microbial communities support all higher lifeforms and any significant perturbation to them (for example, rising levels of ocean acidity and the sensitivity of marine microbes to these changes) has a knock-on effect on the existence of all life. Undoubtedly, as we come to understand more about how micro-organisms respond to environmental disturbances, data gathered by studies will help us to elucidate the overall impact of climate change itself.

Using Micro-organisms to Limit the Impact of Climate Change

Climate science is not just about studying the impact of climate change itself, though that does contribute a large part of the field, it also is about developing technological solutions that can ease the burden of human activity on fragile ecosystems. Some uses of microbes and biotechnology to solve this issue are listed below.

Using Microbes to Absorb CO2

The best way to combat climate change remains the mitigation and reduction of greenhouse gases. The main greenhouse gas that most people know about is carbon dioxide and for years scientists have been researching ways to mitigate the levels of this gas in the atmosphere.

A team at the Weizmann Institute of Science in Rehovot, Israel, has used a combination of lab evolution and genetic engineering to create a strain of E. Coli which uses CO2 as its sole source of carbon.

It is hoped that systems can be developed to use this modified form of E. Coli to consume atmospheric CO2 and either store it or produce biofuel and foodstuffs. However, the team is still working on increasing the efficiency of the bacteria in consuming atmospheric CO2.

Reducing Nitrous Oxide Emissions

Another critical greenhouse gas is nitrous oxide. It is the third most important GHC and is also a major ozone-depleting substance. One of the major routes of production of this harmful gas, which is also a major pollutant responsible for numerous deaths worldwide, is car exhausts. Another significant contributor is the agrochemical industry.

Recently, several mitigation techniques based upon microbiological methods have been the subject of research. These include the manipulation of microbiomes in diverse environments and integrating microbiome-based knowledge of nitrous oxide sources and sinks. There has also been research into using bacteria-based systems for directly removing nitrous oxide from car exhausts and power stations.

Nitrous Oxide Emissions

Image Credit: DyziO/Shutterstock.com

Smart Agriculture Applications

Soil microbes play an important part in regulating greenhouse gas emissions, as well as productivity and sustainability of agricultural systems, and degradation of soil and water. All this has a real impact on climate change. Climate-smart agriculture (CSA) is an integrative approach to agriculture that aims to limit the impact of the agricultural industry upon the long-term viability of the climate.

Understanding the specifics of how these soil microbiomes respond to agricultural practices and climatic pressures such as temperature and extreme weather events is an integral part of this discipline. Increased knowledge of microbial ecology and the interactions between plants and microbes in soil is essential for the use of microbial biotechnology for climate change adaptation and mitigation.

Living Concrete

The construction industry has a huge impact on climate change. According to some studies, the contribution of construction projects contributes to 40% of total energy use globally. One innovative use of micro-organisms to combat this issue is the use of “living concrete” which utilizes photosynthetic cyanobacteria called Synechococcus sp. PCC. Held in a biosynthetic gel. Another benefit of this technology is that it can be used to absorb CO2 from the atmosphere.

In Conclusion

Climate change is, without a doubt, the most pressing concern for humanity. It affects the long-term viability of not only our civilization but for all life on Earth.

To maintain a healthy global ecosystem, microbes are vitally important. Understanding the complex interactions of microbial biomes with higher organisms (especially plants) and how these communities of microbes can be affected by climate change is therefore critical. Microbial-based applications for climate-mitigation technology are also an increasingly important area of research.

Sources

Last Updated: Sep 8, 2020

Reginald Davey

Written by

Reginald Davey

Reg Davey is a freelance copywriter and editor based in Nottingham in the United Kingdom. Writing for AZoNetwork represents the coming together of various interests and fields he has been interested and involved in over the years, including Microbiology, Biomedical Sciences, and Environmental Science.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Davey, Reginald. (2020, September 08). Microbes and Climate Change. News-Medical. Retrieved on January 21, 2025 from https://www.news-medical.net/life-sciences/Microbes-and-Climate-Change.aspx.

  • MLA

    Davey, Reginald. "Microbes and Climate Change". News-Medical. 21 January 2025. <https://www.news-medical.net/life-sciences/Microbes-and-Climate-Change.aspx>.

  • Chicago

    Davey, Reginald. "Microbes and Climate Change". News-Medical. https://www.news-medical.net/life-sciences/Microbes-and-Climate-Change.aspx. (accessed January 21, 2025).

  • Harvard

    Davey, Reginald. 2020. Microbes and Climate Change. News-Medical, viewed 21 January 2025, https://www.news-medical.net/life-sciences/Microbes-and-Climate-Change.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.