Ribozyme Activity

Ribozymes are RNA molecules that are capable of catalyzing a chemical reaction. Ribozymes occur naturally inside cells where they play an essential role in the ribosome, joining amino acids together to form protein chains. Ribozymes also play a role in other vital reactions such as RNA splicing, transfer RNA biosynthesis and viral replication.

For many years, researchers thought that only proteins and their cofactors had the structural complexity required to catalyze specific reactions in cells. However, in around 1980, researchers led by Tom Cech’s and Sidney Altman discovered that some enzymes are made of RNA. The first breakthrough was that Cech’s team at the University of Colorado found that an RNA was present in a protozoa called Tetrahymena thermophila that was capable of splicing itself, independently of an outside protein or energy source.

Next, Altman’s team at Yale University discovered another independent RNA in an enzyme called ribonuclease P, which is found in Escherichia coli. The concept of enzymes made of RNA gained credence and overturned the notion that RNA was merely an intermediate in the process of protein synthesis from DNA. Instead, the intrinsic catalytic activity of RNA itself was revealed, a finding for which the two scientists were awarded the Nobel Prize in chemistry in 1989. These ribozymes exhibit all the same features as a protein enzyme including transition state stabilization, specificity and Michaelis Menten Kinetics.

Ribozymes are present in the nucleus, mitochondria and chloroplasts of eukaryotes, as well as in some viruses. These RNA catalysts are grouped by their chemical type, but regardless of the type, all RNA is associated with metal ions such as potassium (K+) or magnesium (Mg2+), which play essential roles in catalysing reactions.

Most ribozymes are involved in the processing of RNA. They either serve as “molecular scissors” and cleave chains of precursor RNA or they serve as “staplers” that ligate two molecules of RNA together. Although most targets of ribozymes are RNA, evidence suggests that the assembly of amino acids into a protein that occurs during translation is also catalyzed by RNA, meaning the ribosomal RNA itself is also a ribozyme.

As well as Cech’s work showing that enzymes made of RNA exist, it also demonstrated that introns, which had previously been considered as non-coding genetic sequences were not actually “junk” at all. The tetrahymena ribozyme Cech’s team discovered was an intron itself and evidence has since demonstrated that as well as having intrinsic catalytic activity, some introns code for proteins that are needed for DNA and RNA to be processed.

RNA was therefore found to have several functions, both as a genetic code repository and as a catalyst in protein synthesis. As the notion that RNA had properties essential to the creation of human life gained credence, the “RNA world” hypothesis was born, which stated that life based on DNA and protein was preceded by RNA, where RNA acted both as cellular enzymes and genetic material. In the process of cellular metabolism becoming more advanced, there was an increasing need to transit to enzymes based on protein and for genetic material to be more stable, in the form of DNA. Researchers excited by this hypothesis started to search many organisms in the hunt for more ribozyme “fossils”.

Researchers have developed synthetic ribozymes in the laboratory that are able to catalyze their own synthesis under specific conditions. One important example is the RNA polymerase ribozyme. Using mutagenesis and selection, scientists have managed to develop and improve variants of the Round-18 polymerase ribozyme from 2001. The most successful of these is called B6.61, which can add up to 20 nucleotides to a primer template over a period of 24 hours.

Sources

  1. https://pharmacophorejournal.com/
  2. https://chemistry.osu.edu/
  3. https://scottlab.ucsc.edu/Home.html
  4. http://www.scs.illinois.edu/silverman/docs/SilvermanPub52.pdf
  5. www.annualreviews.org/.../annurev.biophys.30.1.457
  6. http://www.encyclopedia.com/topic/Ribozyme.aspx
  7. https://www.nature.com/

Further Reading

Last Updated: Jul 20, 2023

Sally Robertson

Written by

Sally Robertson

Sally first developed an interest in medical communications when she took on the role of Journal Development Editor for BioMed Central (BMC), after having graduated with a degree in biomedical science from Greenwich University.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Robertson, Sally. (2023, July 20). Ribozyme Activity. News-Medical. Retrieved on November 21, 2024 from https://www.news-medical.net/life-sciences/Ribozyme-Activity.aspx.

  • MLA

    Robertson, Sally. "Ribozyme Activity". News-Medical. 21 November 2024. <https://www.news-medical.net/life-sciences/Ribozyme-Activity.aspx>.

  • Chicago

    Robertson, Sally. "Ribozyme Activity". News-Medical. https://www.news-medical.net/life-sciences/Ribozyme-Activity.aspx. (accessed November 21, 2024).

  • Harvard

    Robertson, Sally. 2023. Ribozyme Activity. News-Medical, viewed 21 November 2024, https://www.news-medical.net/life-sciences/Ribozyme-Activity.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.