START and STOP Codons

The universal genetic code is made up of several codons or triplet bases. The standard code has evolved over time to minimize coding errors. There are a total of 64 codons in the genetic code arising from the permutation and combination of the 4 bases in nucleic acids.

The genetic code is degenerate i.e. more than one codon can code for a single amino acid. Due to this, of the 64 codons, 61 codons code for the 20 amino acids.

There are two punctuation marks in the genetic code called the START and STOP codons which signal the end of protein synthesis in all organisms.

DNA structure

Reading frames

The genetic code can be read in multiple ways depending on where the reading starts. For example, if the base sequence is GGGAAACCC, reading could start from the first letter, G and there will be 3 codons - GGG, AAA, and CCC. If reading starts at G in the second position, the string will have two codons - GGA and AAC. If reading starts at the third base G, 2 codons will again result - GAA and ACC.

Thus, there are 3 ways of reading the code of every strand of genetic material. These different ways of reading a nucleotide sequence is known as a reading frame. Each reading frame will produce a different sequence of amino acids and hence proteins. Thus, in double stranded DNA, there are 6 possible reading frames.

codon wheel

Codon wheel

START codons

The codon AUG is called the START codon as it the first codon in the transcribed mRNA that undergoes translation. AUG is the most common START codon and it codes for the amino acid methionine (Met) in eukaryotes and formyl methionine (fMet) in prokaryotes. During protein synthesis, the tRNA recognizes the START codon AUG with the help of some initiation factors and starts translation of mRNA.

Some alternative START codons are found in both eukaryotes and prokaryotes. Alternate codons usually code for amino acids other than methionine, but when they act as START codons they code for Met due to the use of a separate initiator tRNA.

Non-AUG START codons are rarely found in eukaryotic genomes. Apart from the usual Met codon, mammalian cells can also START translation with the amino acid leucine with the help of a leucyl-tRNA decoding the CUG codon. Mitochondrial genomes use AUA and AUU in humans and GUG and UUG in prokaryotes as alternate START codons.

In prokaryotes, E. coli is found to use AUG 83%, GUG 14%, and UUG 3% as START codons. The lacA and lacI coding regions in the E coli lac operon don’t have AUG START codon and instead use UUG and GUG as initiation codons respectively.

ribosome translation

 

 

STOP codons

There are 3 STOP codons in the genetic code - UAG, UAA, and UGA. These codons signal the end of the polypeptide chain during translation. These codons are also known as nonsense codons or termination codons as they do not code for an amino acid.

The three STOP codons have been named as amber (UAG), opal or umber (UGA) and ochre (UAA). "Amber" or UAG was discovered by Charles Steinberg and Richard Epstein and they named it amber after the German meaning of the last name of their friend Harris Bernstein. The remaining two STOP codons were then named "ochre" and "opal" so as to maintain the "color names" theme.

During protein synthesis, STOP codons cause the release of the new polypeptide chain from the ribosome. This occurs because there are no tRNAs with anticodons complementary to the STOP codons.

Translation

References

  1. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3293468/
  2. http://depts.washington.edu/agro/genomes/students/stanstart.htm
  3. http://www.ncbi.nlm.nih.gov/Class/MLACourse/Modules/MolBioReview/geneticcode.html

Further Reading

Last Updated: Feb 26, 2019

Susha Cheriyedath

Written by

Susha Cheriyedath

Susha is a scientific communication professional holding a Master's degree in Biochemistry, with expertise in Microbiology, Physiology, Biotechnology, and Nutrition. After a two-year tenure as a lecturer from 2000 to 2002, where she mentored undergraduates studying Biochemistry, she transitioned into editorial roles within scientific publishing. She has accumulated nearly two decades of experience in medical communication, assuming diverse roles in research, writing, editing, and editorial management.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Cheriyedath, Susha. (2019, February 26). START and STOP Codons. News-Medical. Retrieved on November 21, 2024 from https://www.news-medical.net/life-sciences/START-and-STOP-Codons.aspx.

  • MLA

    Cheriyedath, Susha. "START and STOP Codons". News-Medical. 21 November 2024. <https://www.news-medical.net/life-sciences/START-and-STOP-Codons.aspx>.

  • Chicago

    Cheriyedath, Susha. "START and STOP Codons". News-Medical. https://www.news-medical.net/life-sciences/START-and-STOP-Codons.aspx. (accessed November 21, 2024).

  • Harvard

    Cheriyedath, Susha. 2019. START and STOP Codons. News-Medical, viewed 21 November 2024, https://www.news-medical.net/life-sciences/START-and-STOP-Codons.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
CRISPR technology reveals essential noncoding RNAs in the human genome