What is Polyethylene Glycol (PEG)?

Polyethylene glycol (PEG) is a biocompatible, synthetic, hydrophilic polyether compound that has many applications, mostly in the medical industry, but also in the chemical and industrial sectors. The structure of the compound is known as H−(O−CH2CH2)nOH.

Polyethylene Glycol

Image Credit: StudioMolekuul/Shutterstock.com

The synthesis of PEG is done by polymerizing ethylene oxide, the main ingredient in antifreeze, using a ring-opening technique, which allows for PEGs of a range of molecular weights and molecular weight distributions to be constructed. This range in weights is what makes it suitable for several uses.

Characteristics of polyethylene glycol

While varying the molecular weight of PEG can have slight effects on its characteristics, mostly on its shape and physical appearance, many characteristics define PEG. It is non-toxic, colorless, inert, odorless, and non-volatile. Also, it is incredibly soluble in water, and organic solvents such as benzene, carbon tetrachloride, and chloroform.

Creating PEG substances of different molecular weights relies on constructing PEG with different length chains. Larger PEG molecules have a greater number of repetitions of their structure compared with smaller ones.

Below, we discuss how PEG is applied in the two main industries that it is active in.

Uses in the medical industry

PEG has a vast number of applications in the medical industry, and the list continues to grow. Due to its non-toxicity and high solubility, it lends itself to many pharmaceutical and biomedical applications.

To begin with, possibly the most common application of PEG in the medical industry is its use in laxatives. Because PEG can apply osmotic pressure, it can draw water into the waste matter, providing a laxative effect.

In a similar scenario, PEG is often utilized during whole bowel irrigations to prepare the gastrointestinal tract for investigation or surgery. PEG is also used in many pharmaceutical creams, ointments, and medical solvents.

Peptides, proteins, or oligonucleotides are used as drug targets for various illnesses. PEG can be used to bioconjugate itself to the target, by coupling itself with the target molecule to optimize the pharmacokinetic properties of drug treatment.

PEG can be used as an inactive substance that acts as the vehicle for a drug. The process of drug delivery relies heavily on PEG because the compound can link together antibody-drug conjugates (ADCs). It can also be used to improve systematic drug delivery by adding it as a surface coating on nanoparticles. PEG can also be used to slow the clearance of coated proteins from the blood in biomedicines.

PEG hydrogels are also used in drug delivery, as well as in tissue engineering. PEG hydrogels are polymer networks that are created by crosslinking reactive PEG end groups, resulting in gels that are resistant to protein biodegradation and adhesion. These properties are beneficial to tissue engineering and drug delivery.

In vitro assays have also become dependent on PEG, using it to mimic crowded cellular conditions to allow researchers to research intracellular environments outside of the body.

Protein analysis is another biomedical area that utilizes PEG, which is used in several applications in this field. The compound is used as a precipitant for DNA isolation as well as for cell crystallization, helping to reveal the atomic structure of proteins.

Gene therapy uses PEG to coat vectors, for example, viruses, to protect them from being inactivated by the immune system, and to de-target them in the organs, preventing their potentially toxic effect.

PEG is also particularly essential in blood banks, where it is used to enhance the salience of antibodies and antigens.

The future is likely to see more medical applications of PEG develop. One current focus of research in this area is exploring how PEG can be used in the spinal cord and peripheral nerve injury, by employing it to fuse axons that have been compromised.

Uses in the chemical industry

PEG has many roles in the chemical industry, which also cross over into applications in other industries. Firstly, it is well known for its use as a binding and dispersing agent, as it can improve the separation of particles and prevent clumping.

Also, as PEG has hydrophilic properties, it has found a role in preventing the non-specific sticking of proteins in studies using single-molecule fluorescence.

Also, because the compound is non-toxic and recognized as safe by the FDA, it has been able to be used in numerous coatings that enable lubrication in various scenarios.

Applications in preservation have also found a use for PEG, which is now employed to prevent and slow the damage and shrinkage of wood that has been submerged. It was used to preserve the Vasa warship in Stockholm, replacing the water trapped within the wood to prevent warping and shrinking.

Another famous case that has appropriated PEG is the restoration and preservation of the Terracotta Warriors. A PEG preservative was specially developed to preserve the colors painted onto the Terracotta army, which date back to the Qin Shi Huang Di dynasty.

As in the medical industry, the chemical applications of PEG will likely continue to grow.

Sources:

Ganji, M., Docter, M., Le Grice, S. and Abbondanzieri, E. (2016). DNA binding proteins explore multiple local configurations during docking via rapid rebinding. Nucleic Acids Research, 44(17), pp.8376-8384. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5041478/

Kean, S. (2019). Chemical Hope. [online] Science History Institute. Available at: https://www.sciencehistory.org/distillations/magazine/chemical-hope [Accessed 24 Dec. 2019].

Tum.de. (2019). Conservators preserve the paint layers of the Terracotta Army. [online] Available at: https://www.tum.de/en/ [Accessed 24 Dec. 2019].

Last Updated: Feb 21, 2023

Sarah Moore

Written by

Sarah Moore

After studying Psychology and then Neuroscience, Sarah quickly found her enjoyment for researching and writing research papers; turning to a passion to connect ideas with people through writing.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Moore, Sarah. (2023, February 21). What is Polyethylene Glycol (PEG)?. News-Medical. Retrieved on November 21, 2024 from https://www.news-medical.net/life-sciences/What-is-Polyethylene-Glycol-(PEG).aspx.

  • MLA

    Moore, Sarah. "What is Polyethylene Glycol (PEG)?". News-Medical. 21 November 2024. <https://www.news-medical.net/life-sciences/What-is-Polyethylene-Glycol-(PEG).aspx>.

  • Chicago

    Moore, Sarah. "What is Polyethylene Glycol (PEG)?". News-Medical. https://www.news-medical.net/life-sciences/What-is-Polyethylene-Glycol-(PEG).aspx. (accessed November 21, 2024).

  • Harvard

    Moore, Sarah. 2023. What is Polyethylene Glycol (PEG)?. News-Medical, viewed 21 November 2024, https://www.news-medical.net/life-sciences/What-is-Polyethylene-Glycol-(PEG).aspx.

Comments

  1. Aguedo Aragones Aguedo Aragones Brazil says:

    As a researcher in biomaterials to regenerative medicine, I´d like to say thanks for the information about this important polymer.
    Aragones, A.

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Microplastics found in human blood: potential cardiovascular threat