Magnetic tweezers that can manipulate strands of DNA

An array of magnetic traps designed for manipulating individual biomolecules and measuring the ultrasmall forces that affect their behavior has been demonstrated by scientists at the National Institute of Standards and Technology (NIST).

The chip-scale, microfluidic device works in conjunction with a magnetic force microscope. It's intended to serve as magnetic "tweezers" that can stretch, twist and uncoil individual biomolecules such as strands of DNA. The device should help scientists study folding patterns and other biochemical details important in medical, forensic and other research areas.

The new NIST device works like drawing toys that use a magnetized stylus to pick up and drag magnetic particles. Magnetic particles 2 to 3 micrometers across are suspended in a fluid and injected into the device. The surface of a thin membrane enclosing the fluid is dotted with an array of thin film pads made of a nickel-iron alloy. When a magnetic field is applied, each particle is attracted to the closest nickel-iron "trap."

So far, the research team has demonstrated that the traps attract individual particles and that the microscope tip can gently drag particles with piconewton forces. (One piconewton is about a trillionth the force required to hold an apple against Earth's gravity.)

The next step is to attach particles to both ends of biomolecules such as DNA. The trapping stations then can be used to hold one end of a molecule while the microscope tip gently pulls on the other end. By applying magnetic fields in different directions, the researchers hope to ultimately rotate the magnetic particles to produce complex single molecule motions for genomic studies.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Epigenetic silencing of BEND4 unveils new path for PDAC treatment