Advances in biomedical imaging could lead to more sensitive screening tests for cancer-fighting drugs

Advances in biomedical imaging are allowing UC Davis researchers to use mice more effectively to study cancers comparable to human disease. The system can distinguish different stages of cancer and could lead to more sensitive screening tests for cancer-fighting drugs.

Positron emission tomography (PET) is widely used for detecting and following cancer in human patients. It works by following short-lived radioactive tracers that are taken up by fast-growing cancer cells.

PET scanners used for humans don't have the resolution to image an animal as small as a mouse. Researchers led by Simon Cherry, a professor of biomedical engineering at UC Davis, have developed a PET scanner sensitive enough to use with mice, and Craig Abbey, also in the Department of Biomedical Engineering, has developed image analysis methods to use the scanner to monitor tumors.

They're working with cancer researchers Alexander Borowsky, Robert Cardiff and Jeffrey Gregg at the UC Davis Center for Comparative Medicine to study cancerous growths in mice similar to ductal carcinoma in situ (DCIS), a precursor to breast cancer in humans.

"With non-invasive imaging, we can follow the development of disease in one mouse over a long time period," Abbey said. The method is also more sensitive to changes in cancer growth, making it possible to look for small treatment effects.

Most invasive breast cancers are thought to develop from DCIS, and standard care is to remove the entire area involved, Borowsky said. Based on the appearance of a DCIS under the microscope, doctors can estimate how quickly it could become a more aggressive, invasive form if not completely removed, he said. The new PET technology allows researchers to follow the same changes in a mouse without surgery.

"Not only can we see the DCIS-like lesion, but we can detect the earliest transition to an invasive tumor," Borowsky said. The model could be used to test treatments that would slow or stop that transition in human patients, as well as to ask basic questions about how cancers develop.

http://www.news.ucdavis.edu

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Coffee and tea consumption linked with lower risk of head and neck cancer