Investigation into mTOR protein function is far from over

Discovery of the mTOR protein and the role it plays in cell growth, a process often linked to diseases such as cancer, was part serendipity and part good detective work. And like any good whodunit, the mTOR story wouldn’t be complete without an unexpected twist.

The mTOR story begins with rapamycin, an immunosuppressant used to prevent organ rejection in transplant patients. Initially, doctors knew rapamycin was effective but didn’t know exactly why. Scientists then discovered that rapamycin works by blocking the activity of a protein responsible for sensing nutrients in a cell’s environment. By inhibiting this protein, rapamycin tricks cells responsible for organ rejection into believing that they are starving, causing them to stop growing. Scientists dubbed the protein mTOR, mammalian target of rapamycin.

Studies conducted in Whitehead scientist David Sabatini’s lab found that rapamycin was inhibiting a complex of proteins that, together with mTOR, sense nutrients and control cell growth. As Sabatini and others studied mTOR in greater depth, its role in disease became more apparent, raising hopes that mTOR could be targeted by drug therapy. But new research from the Sabatini lab suggests that the investigation into mTOR’s function is far from over.

“When you completely snuff out mTOR activity, cells die. Yet, rapamycin, which we know inhibits mTOR, isn’t overtly toxic to patients or cells in culture," says Dos Sarbassov, a postdoc in Sabatini’s lab. This, he says, suggests that rapamycin does not inhibit the essential mTOR function.

In the July 27 issue of Current Biology, the group reported the discovery of a protein, called rictor, that helps explain why rapamycin is not toxic to patients and provides new evidence that mTOR plays a more complex role in the cell than previously thought. Despite rapamycin’s destructive effect on some mTOR proteins, mTOR that is bound to rictor remains unaffected and able to perform other jobs within the cell.

“When given to patients, rapamycin is inhibiting only a fraction of mTOR’s activity,” says Sabatini. “This has important ramifications for pharmaceutical companies developing drugs to inhibit mTOR activity.” Researchers in the Sabatini lab currently are investigating what other roles mTOR may play in mammalian cells.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers discover how mutations disrupt protein splicing and cause disease