Richard Axel has won the 2004 Nobel Prize in physiology or medicine

Richard Axel of the Columbia University Medical Center has won the 2004 Nobel Prize in Physiology or Medicine along with Linda B. Buck of the Fred Hutchinson Cancer Research Center for clarifying how the olfactory system works. Buck was a postdoctoral fellow at Columbia when she and Axel jointly published the fundamental paper on the subject in 1991.

The sense of smell has remained the most enigmatic of the senses. The work of Axel and Buck has provided understanding about how the nose is able to distinguish more than 10,000 smells. The researchers discovered a gene pool of more than 1,000 different genes that encode olfactory receptors in the nose. This is believed to be the largest gene family in the human genome.

"I'm deeply honored and very pleased," Axel said. "This honor represents the long efforts of the many faculty, students and fellows who have worked within our laboratories at Columbia University Medical Center. I have received enormous support over the years beginning with the scholarship I received to attend Columbia College. I have to also thank the National Institutes of Health and the Howard Hughes Medical Institute that allowed the performance of truly novel experiments by our research team."

Axel is University Professor at Columbia University and investigator at the Howard Hughes Medical Institute at the College of Physicians & Surgeons, Columbia University Medical Center . He has been at Columbia University Medical Center his entire career, and was an undergraduate at Columbia College.

Axel and Buck join a group of 70 other notable Columbians whose work has been recognized by the Nobel Foundation, including 19 in the category of physiology or medicine.

"Columbia University is honored that our esteemed faculty member, Richard Axel, has received the Nobel Prize for his pioneering studies clarifying how our sense of smell works," said Columbia University President Lee C. Bollinger. "Dr. Axel's groundbreaking research solves the puzzle of how we translate the sensations around us into knowledge that is key for our survival and quality of life."

Gerald D. Fischbach, executive vice president of Columbia University Medical Center, said, "Dr. Axel's work is among the most important discoveries of the past 50 years, providing insights regarding how individuals perceive their external environment. He has been an enormously important influence for all the sciences here at Columbia University, the Medical Center and the College of Physicians & Surgeons. His wide range of interests and enormous skills in molecular biology have influenced faculty throughout the University."

David Hirsh, executive vice president for research at Columbia University, said, "We congratulate Richard and Linda for their profoundly important discovery, and for the way in which they achieved it. Their experiments represent the highest form of creativity, scientific discipline and scholarship. This is science at its most beautiful."

The sense of smell is possible because neurons directly connect the brain to the outside world. In the nose, receptors on the neurons pick up odors from the environment and send that information directly to the olfactory bulb, the first relay station in the brain. Axel and Buck determined how neurons converge in the olfactory bulb, which gave them further insights into how smell is processed in the brain. Each olfactory receptor cell possesses only one type of odorant receptor, and each receptor can detect a limited number of odorant substances, so the olfactory receptor cells are highly specialized for a few odors. Most odors are composed of multiple odorant molecules, and each odorant molecule activates several odorant receptors, leading to a combined odorant pattern, which allows us to recognize and form memories of approximately 10,000 different odors. The combination of odorant receptors activated when we smell a rose tells us that it smells nice and is different from the combination of receptors activated by rotting fish.

The sense of smell also is essential to the survival of most species, which use their olfactory systems to identify food, smell predators and observe and interpret their environments. In humans, smells warn us if food has gone bad and can be powerful enough to trigger distinct memories years later.

http://www.columbia.edu/

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study highlights air pollution as key environmental factor in autism risk