Mechanical loading through exercise builds bone strength

Mechanical loading through exercise builds bone strength and this effect is most pronounced during skeletal growth and development, according to Charles H. Turner, professor in the Department of Orthopaedic Surgery and director of orthopaedic research at the Indiana University School of Medicine, Indianapolis.

Exercise that puts the “best” kind of mechanical load to strengthen bones, especially during childhood and adolescence, Turner says, involves impact or high rates of load such as running or jumping, as opposed to swimming or biking. Growing bones are most responsive to the strengthening effects of running/jumping, which have the additional benefit that these types of exercise don’t affect longitudinal growth, Turner says.

Activities like “serious weight-lifting, however, aren’t recommended for children because overloading growing joints can stunt longitudinal bone growth,” and consequently stunt overall limb growth and height, he adds.

Turner says that the strengthening effect of exercise is very efficient because the cellular mechanosensors within bone direct osteogenesis (new bone growth) to where it is most needed to improve bone strength and hence bone mass.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Blue light exposure may accelerate bone growth and early puberty in rats