New chemical reaction that could greatly accelerate pharmaceutical production

University of Toronto researchers have a developed a new chemical reaction that could greatly accelerate pharmaceutical production, while also cutting costs and toxic by-products.

The reaction, designed by chemistry Professor Mark Lautens and graduate student Eric Fang, simplifies the creation of the basic molecular framework found in many natural products and popular pharmaceuticals like some cholesterol-lowering drugs. Until now, synthesizing this framework - an indole - was inefficient, requiring six to 10 steps and often producing toxic by-products. "This new method only takes three steps and results in less waste," says Lautens, the NSERC-Merck Frosst Industrial Research Chair in New Medicinal Agents via Catalytic Reactions and AstraZeneca Professor of Organic Synthesis.

Indoles are ring structures containing carbon and nitrogen. In the process, the researchers used a metallic element as a catalyst to form two chemical bonds and create a diverse range of indole-containing compounds. These compounds could then be used to make drugs now on the market or form the basis of new therapeutic drugs.

Lautens says this new molecular-level technique could equal big savings and less environmental impact. "In order to make a hundred kilograms of these best-selling drugs, there are often hundreds of litres of solvent used, not to mention the many purification processes involved. Not only are you speeding up the process, you're also reducing waste and energy used in manufacturing."

A provisional patent was filed by U of T's Innovations Foundation in March. The research was funded by the Natural Sciences and Engineering Research Council of Canada.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study shows how a single defective BRCA1 gene accelerates cancer development