Computer simulation helps understand DNA transcription process

New York University chemists have employed a computer simulation whose results have enhanced scientific understanding of the DNA transcription process. The study, funded by the National Institutes of Health, appears in the June 7 issue of the Proceedings of the National Academy of Sciences.

Previous research has indicated that chromatin--a chromosome's substance consisting of histone proteins and DNA--exhibits salt-dependent conformations. Specifically, chains of nucleosomes, the building blocks of chromatin that appear as bead-like structures along DNA, fold into a condensed fiber as salt increases. This folding and the interplay between chromatin structures regulate fundamental gene expression. However, the molecular mechanism underlying this process remains unclear.

The research team, which included NYU chemists Tamar Schlick, Jian Sun (now at the Cornell Medical School), and Qing Zhang, analyzed a 12-nucleosome array. Using a variety of salt conditions, the researchers found that the nucleosomal array formed irregular three-dimensional zig-zag structures at high salt concentrations and "beads-on-a-string" structures at low salt, demonstrating that the structure of chromatin strongly depends on its salt environment.

To Schlick and her colleagues, these results revealed that in a low-salt environment, linker DNAs in the array were repelled, preventing array folding and resulting in a bead-like structure. However, under high-salt conditions, screening of linker DNA repulsion allows close contacts and attraction between nucleosomes, allowing the array to fold. As chromatin folding or unfolding prevents or allows the transcriptional machinery's access to the DNA in a chromosome, this computer simulation study helps to understand the mechanism of gene expression and silencing.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New discovery reveals twisting action of molecular motors in the DNA