Key step in the production of beta-amyloid

Researchers at UT Southwestern Medical Center have defined a key step in the production of beta-amyloid, a short protein that is thought to be responsible for the development of Alzheimer's disease. Understanding this step may aid in the discovery of drugs that could help block the disease from developing.

In Alzheimer's disease, too much beta-amyloid is produced by an enzyme that has many other essential roles. As a result, simply blocking the whole enzyme knocks out many of its other functions - which is fatal to the organism.

Using cultured human and mouse cells, as well as test-tube assays, UT Southwestern researchers singled out how just one portion of the enzyme, a protein called nicastrin, is involved in the pathway that produces beta-amyloid, thereby leading to Alzheimer's disease. They hope next to work on ways to specifically block nicastrin. The study appears in the August 12 issue of the journal Cell.

"The work provides an attractive potential strategy for developing treatment for Alzheimer's disease," said Dr. Gang Yu, assistant professor in the Center for Basic Neuroscience and of cell biology and senior author of the study. The research uncovered an "unprecedented mechanism of biochemistry," Dr. Yu said.

Nicastrin is a large protein that is a component of an enzyme called gamma-secretase, which is lodged in the cell's membrane. When it is at the cell surface, nicastrin sticks out into the area outside the cell. It has been thought to play a key role in the creation of a protein called amyloid-beta - the prime suspect for the damage Alzheimer's does to the brain - but the exact mechanism was unknown.

Dr. Yu and his colleagues found that nicastrin binds to several proteins lodged in the cell's membrane, including one called amyloid precursor protein, or APP. Nicastrin then guides membrane-bound proteins to the active area of gamma-secretase, which then splits the proteins. APP, for example, is chopped into two parts: amyloid-beta, which is then shipped to the outside of the cell, and another part that remains inside. Amyloid-beta forms the plaques seen in brains afflicted with Alzheimer's.

"Actually, it's quite a simple mechanism," Dr. Yu said. "Hopefully, we can screen for Alzheimer's protein compounds that can block this process and find the exact pathways and how it can be regulated in Alzheimer's disease."

Now that nicastrin's function has been ascertained, it opens a way to block just the splitting of APP, leaving all the enzyme's other functions intact. For instance, it may be possible to generate chemical compounds that specifically prevent nicastrin from latching on to APP. If APP doesn't attach to nicastrin, APP remains intact and harmless. Meanwhile, nicastrin would be free to bind all the other essential proteins that it works on.

"We want to find a particular way to block the recognition of APP but not the others," Dr. Yu said.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Human protein MxA restricts H5N1, but virus mutations raise alarms