Unexpected link between muscular dystrophy and muscle wasting associated with cancer

A new study provides important insight into the mechanisms of a muscle wasting disorder that interferes with treatment for cancer and has a negative impact on patient survival.

The research, published in Cancer Cell, describes an unexpected link between muscular dystrophy and muscle wasting associated with cancer, and suggests a potential strategy for development of therapies to combat cancer-associated muscle wasting.

Muscle wasting, or cachexia, is a severe and debilitating consequence of cancer that occurs in a majority of patients and is thought to contribute to up to one third of all cancer deaths. The molecular mechanisms underlying skeletal muscle cachexia are not well understood, but it is highly likely that effective cachexia therapy might improve patients' quality of life, ability to receive treatment, and survival. To gain insight into the mechanisms underlying muscle wasting in cancer patients, Dr. Denis C. Guttridge from the Human Cancer Genetic Program and the Department of Molecular Virology, Immunology & Medical Genetics at The Ohio State University and colleagues analyzed cachectic muscles in tumor-bearing patients and mice.

The researchers found that wasting associated with cancer in mice is linked to a dysfunctional dystrophin glycoprotein complex (DGC), a structure in the muscle cell membrane that is mutated in the muscle wasting disease muscular dystrophy. Progression of cancer is associated with reduction of dystrophin and abnormal regulation of the DGC proteins. Mice lacking dystrophin exhibit enhanced tumor-induced wasting, while transgenic animals expressing dystrophin were spared from the disease. Significantly, cachectic patients with gastrointestinal cancers had dramatic reductions in dystrophin when compared to weight-stable healthy individuals.

Although cancer cachexia and muscular dystrophy both involve muscle loss, the mechanisms underlying these diseases had been thought to be widely divergent. However, the results of this study point to deregulated DGC as one potentially critical shared characteristic. "Collectively, evidence in this study suggests that DGC dysfunction may be an early event in some cancers contributing to cachexia. Since effective therapies are currently lacking, results imply that approaches targeted to restoring DGC function could also be considered as an option in designing anticancer cachexia therapies," concludes Dr. Guttridge.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study uncovers how cancer builds molecular bridges to evade the immune system