Ataxia gene identified

Researchers at the University of Minnesota Medical School have discovered the gene responsible for a type of ataxia, an incurable degenerative brain disease affecting movement and coordination.

This is the first neurodegenerative disease shown to be caused by mutations in the protein b-III spectrin which plays an important role in the maintaining the health of nerve cells. The scientific discovery has historical implications as well--the gene was identified in an 11-generation family descended from the grandparents of President Abraham Lincoln, with the President having a 25 percent risk of inheriting the mutation.

"We are excited about this discovery because it provides a genetic test that will lead to improved patient diagnoses and gives us new insight into the causes of ataxia and other neurodegenerative diseases, an important step towards developing an effective treatment," said Laura Ranum, Ph.D., senior investigator of the study and professor of Genetics, Cell Biology and Development at the University of Minnesota.

Understanding the effects of this abnormal protein, which provides internal structure to cells, will clarify how nerve cells die and may provide insight into other diseases, including amyotrophic lateral sclerosis (Lou Gehrig's disease) and Duchenne muscular dystrophy. The research will be published in the February print issue of Nature Genetics, and posted online Jan. 22, 2006.

Ataxia is a hereditary disease that causes loss of coordination resulting in difficulty with everyday tasks such as walking, speech, and writing. About 1 in 17,000 people have a genetic form of ataxia.

Spinocerebellar ataxia type 5 (SCA5) is a dominant gene disorder; if a parent has the disease, each of their children has a 50 percent chance of inheriting the mutation and developing ataxia sometime during their lifetime. The onset of SCA5 usually occurs between the ages of 30 and 50, but can appear earlier or later in life, with reported ages of onset ranging from 4 to more than 70 years of age.

Now that researchers have identified the specific mutation that causes SCA5, testing of patients at risk of developing this disease is possible before any symptoms appear. The availability of predictive testing allows people with a family history of the disease to determine whether they will develop the disease and whether their children are at risk of inheriting the mutation. In addition, the prognoses of the different types of ataxias vary greatly, so identifying the specific type of ataxia provides patients with a more accurate picture of what the future holds.

Ranum added: "Finding the SCA5 mutation in Lincoln's family makes it possible to test Lincoln's DNA - if it becomes available - to unequivocally determine if he carried the mutation and had or would have developed the disease." Biographical texts of Lincoln include descriptions of his uncoordinated and uneven gait, suggesting the possibility that he showed early features of the disease.

Ranum started this historical and scientific journey more than a decade ago. She and her colleagues John Day, M.D., Ph.D., University of Minnesota, and Larry Schut, M.D., CentraCare Clinic in St. Cloud, Minn., examined and collected DNA samples from more than 300 Lincoln family members who live across the country, tracking descendants from two major branches of the family.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers uncover key genes linked to DCIS progression