X chromosome dosage compensation occurs in germ cells

X chromosome dosage compensation does occur in germ cells. A study published today in the open access journal Journal of Biology reveals that expression of the genes on the X chromosome is doubled in Drosophila germ cells to compensate for the missing second X chromosome.

The study shows that this also occurs in C. elegans and mice somatic cells. In human female somatic cells, one of the two X chromosomes is inactivated to equilibrate expression between the sexes, but this unbalances the expression of the X compared to the other chromosomes. This study is the first demonstration that the X chromosome is upregulated in germs cells, which brings the X chromosome and the other chromosomes back into balance. The study is also the first demonstration that upregulation of the X chromosome in somatic tissue is conserved across species.

Vaijayanti Gupta from the National Institute of Diabetes and Digestive and Kidney Disease at the National Institutes of Health (NIH), Bethesda, USA collaborated with colleagues from the Center for Information Technology at the NIH and colleagues from Incyte Genomics, Palo Alto, USA. Gupta et al. carried out microarray analyses of 2,245 genes present on the X chromosome of Drosophila germ cells and somatic cells. Drosophila males have one X chromosome and two autosomes (X;AA) while Drosophila females have two X chromosomes and two autosomes (XX;AA).

The results of the microarray analyses show that the single male X chromosome is expressed at the same level as the two female X chromosomes put together in both somatic cells and germ cells. By creating sex-transformed flies, Gupta et al. were able to show a two-fold X-chromosome mRNA level difference compared with the autosomes in both male and female germ cells with a single X chromosome. This indicates that the X chromosome is hypertranscribed compared to the autosomes in germ cells. Gupta et al.'s results suggest that the two X chromosomes in female germ cells are repressed to match their expression to the autosomes. The authors also demonstrate that dosage compensation occurs for all the genes on the X chromosome.

Gupta et al. then show that dosage compensation by increased X chromosome expression occurs in male and female somatic cells in C.elegans and mice, and suggest that dosage compensation is essential across species.

In Drosophila somatic cells, dosage compensation is dependent on the male-specific-lethal complex - a set of acetylating proteins and non-coding RNAs that increase gene expression. This complex is not present in germ cells and the authors write "there are a host of post transcriptional mechanisms that could conceivably mediate germline dosage compensation."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Y chromosome’s unexpected impact on aging and disease in men