Oxygen free radicals associated with Parkinson's Disease

Research by neuroscientists at the University of Virginia Health System shows that oxygen free radicals are damaging proteins in mitochondria, the tiny cellular 'batteries' of brain cells.

This damage may be one main cause of Parkinson's Disease (PD), the chronic movement disorder that affects at least one million Americans. UVa scientists believe the damage is taking place in a large protein structure called complex I, the first stop in the electron transport chain, which produces an electrical charge inside mitochondria. Mitochondria then use this electrical charge to make energy.

Using the brain cells from deceased Parkinson's patients who donated to the UVa brain bank, Dr. Jim Bennett, a UVa neurologist, and colleagues, isolated complex I from the mitochondria of ten Parkinson's brains and compared them to the complex I proteins from twelve normal brains. They discovered that the complex I assembly in Parkinson's had 50 percent more damage from oxygen. The complex I in Parkinson's brains also had evidence of not being properly assembled and had reduced electron flow, Bennett said.

"This part of the protein complex is being damaged by oxygen free radicals more in a brain with Parkinson's than it is in someone of same age who does not have PD," Bennett said. His research is published in the Journal of Neuroscience.

Oxygen free radicals are oxygen molecules that carry an extra electron. They are destructive because, in excessive amounts, they chemically attack the components of the cell, including proteins, DNA and lipids in cell membranes. One of the major problems of normal aging is an increased level of these free radical damaged proteins, along with damaged DNA and lipids.

Bennett believes that Parkinson's patients may benefit one day from drugs that can slow the damage from free radicals. "If we could soak up the free radicals in mitochondria, then complex I could repair itself," Bennett said. "If this damage is caught in people early on, we might interrupt the progression of Parkinson's disease. Such treatment is hypothetical at this point, but it is rational."

Right now, Bennett and his colleagues don't know why complex I was damaged in the Parkinson's patients. "It could be that something has gone terribly wrong with the mitrochondrial genome passed down by a person's mother that codes for several proteins in complex I," Bennett said. "Something could be wrong in the coding for genes that help complex I assemble. Or there could be environmental toxins. Our research is a first real step in understanding at a detailed biochemical level what the challenge is."

Bennett said he now plans to model the observation by extracting mitochondrial DNA from the cells of donated PD brains, put the DNA into a cell and express it to see if the phenomenon can be reproduced.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Replicating Lewy body formation in living neurons to understand Parkinson's disease