Muscle restoration in an animal model of Duchenne muscular dystrophy

Using a new type of drug that targets a specific genetic defect, researchers at the University of Pennsylvania School of Medicine, along with colleagues at PTC Therapeutics Inc. and the University of Massachusetts Medical School, have for the first time demonstrated restoration of muscle function in a mouse model of Duchenne's muscular dystrophy (DMD).

The research appears ahead of print in an advanced online publication of Nature.

"This new class of treatment has the potential to help a large number of patients with different genetic diseases that have the same type of mutation," says senior author H. Lee Sweeney, PhD, chair of the Department of Physiology at Penn. This genetic flaw causes from 5 to 15 percent (and in a few instances up to 70 percent) of individual cases of most inherited diseases, including DMD, cystic fibrosis, and hemophilia.

The new drug, developed by the South Plainfield, NJ-biotech firm and called PTC124, binds to the ribosome, a cellular component where the genetic code is translated into proteins, one amino acid at a time. The drug allows the ribosome to read through a mistake in the genetic code called a premature stop codon in order to properly make whole proteins.

In DMD, patients are missing dystrophin, a protein that helps keep muscle cells intact. About 15 percent of DMD patients do not make dystrophin because of the mutation. DMD eventually affects all voluntary muscles, as well as heart and breathing muscles.

PTC124 attaches to ribosomes in all cell types within the MD mouse model, overriding the mutation in the dystrophin gene that tells it to halt production of the protein. Instead of stopping, the full-length dystrophin protein is made. The drug enables enough protein to be made to correct defects in the muscle of the DMD mouse, and at the same time the drug does not prevent the ribosome from reading correct "stop" signals in the genetic code to make other necessary proteins.

"Enough dystrophin accumulated in the muscles of the MD mice so that we could no longer find defects in the muscles when we examined them," says Sweeney. "For all intents and purposes the disease was corrected by treatment with PTC124." The drug allowed dystrophin to be made in cells in which it was previously absent, to be delivered to the proper location at the cell membrane, and to induce restoration of muscle function in rodent muscles.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
How carrageenan affects insulin resistance