New approach to predict protein function

In a paper published online this month in the journal Nature Chemical Biology, researchers report that they have developed a way to determine the function of some of the hundreds of thousands of proteins for which amino acid sequence data are available, but whose structure and function remain unknown.

The research team, led by University of Illinois biochemistry professor John A. Gerlt, is the first to use a computational approach to accurately predict a protein's function from its amino acid sequence. Their ,in silico, (computer-aided) predictions were validated in the laboratory by means of enzyme assays and X-ray crystallography.

The new approach involved searching databases of known proteins for those with amino acid sequences that had the greatest homology to the unknown proteins. The researchers then used the three-dimensional structures of the most closely matched known proteins in their analyses of protein function.

Using the structural data obtained from this homology modeling, the team performed computerized docking experiments to quickly evaluate whether the unknown proteins were likely to bind to any of a vast library of potential target molecules, or substrates. Determining which substrate binds to a given protein is vital to understanding the protein's function.

"This study describes an integrated approach using experimental techniques, computational techniques and X-ray crystallography for predicting the function of a protein of previously unknown function," Gerlt said.

These methods will speed the task of identifying the biological roles of some of the hundreds of thousands of proteins whose functions have not yet been discovered.

"Rather than trying to do (laboratory) experiments on 30,000 compounds to determine if they are substrates, with this approach you might do experiments on 10," Gerlt said.

The study involved a family of proteins within the large and diverse enolase superfamily. Enolases are enzymes that catalyze the breakdown of glucose and related compounds into other molecules as needed for metabolism.

The enzymes within the enolase superfamily utilize similar reaction mechanisms to one another but catalyze different reactions, complicating the task of discovering their function. There are more than 3,000 proteins in the enolase superfamily, and a majority of them have not yet been fully , or accurately , characterized. (The new study also revealed that one family of enolase proteins had been misclassified.)

Gerlt and his colleagues expect that the computational approach they pioneered will help scientists more efficiently tackle the problem of understanding these , and other , unknown proteins.

"There are 4 1/2 million protein sequences in the sequence databanks, and maybe the functions are known for, can be assigned to, half of those with some reliability," Gerlt said. "That tells you that there is a lot of biology to be discovered."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers discover how mutations disrupt protein splicing and cause disease