Selective attention increases both gain and feature selectivity of the human auditory cortex

On Sept. 19, a research report by Helsinki University of Technology, Laboratory of Computational Engineering scientists appears in the online, open-access journal PLoS ONE, showing that selective attention increases both gain and feature selectivity of the human auditory cortex.

The ability to select task-relevant sounds for awareness, whilst ignoring irrelevant ones, constitutes one of the most fundamental of human faculties, but the underlying neural mechanisms have remained elusive.

While most of the literature explains the neural basis of selective attention by means of an increase in neural gain, a number of papers propose enhancement in neural selectivity as an alternative or a complementary mechanism.

The results of Kauramäki and colleagues suggest that auditory selective attention in humans cannot be explained by a gain model, where only the neural activity level is increased, but rather that selective attention additionally enhances auditory cortex frequency selectivity.

The results were obtained by measuring electroencephalographic event-related potentials during task performance in healthy volunteers.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Traditional Chinese herb shows promise against Alzheimer’s and Parkinson’s