New cell culturing technique provides better understanding of hearing loss, tinnitus and balance problems

In a breakthrough that will likely accelerate research aimed at cures for hearing loss, tinnitus, and balance problems, scientists have perfected a laboratory culturing technique that provides a reliable new source of cells critical to understanding certain inner-ear disorders.

The cells, known as hair cells, are the essential sound and balance detectors in the inner ear. Damage to these cells is a key factor in hearing and balance loss, and while birds, fishes, and amphibians can quickly regrow damaged hair cells, humans cannot. Until now, scientists seeking clues to this problem have been hampered by difficult procedures required to gather these cells for their research.

In the September 24-28 early edition of the Proceedings of the National Academy of Sciences (PNAS), MBL Whitman Investigators Zhengqing Hu and Jeffrey Corwin, both of the University of Virginia School of Medicine, describe a new technique for isolating cells from the inner ears of chicken embryos and growing them in their laboratory. The scientists achieved these results by inducing avian cells to differentiate into hair cells via a process known as mesenchymal-to-epithelial transition.

Hu and Corwin were able to freeze and thaw the cultured cells, then grow new cells from the thawed cultures - a discovery that will make hair cells accessible to more researchers.

The study of hair cells is crucial to understanding hearing loss because hair cells are a precious commodity in humans. We are born with a limited number of these sound detectors in each ear, which can be easily damaged by age, certain illnesses, loud noises, and adverse reactions to medications. Once damaged, the cells do not grow back, causing hearing and balance problems.

“Until now, scientists working to understand many inner ear disorders had to resort to difficult microdissections to gather even small numbers of these cells, which limited the types of research that could be pursued and slowed the pace of discoveries,” says Corwin.

The availability of vials of frozen cells that can be induced to form hair cells should remove a significant barrier to progress toward the development of treatments for the more than 20 million Americans who suffer from hearing loss and balance problems.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study identifies novel IgAN loci through pleiotropy