Researchers working on the development of drugs to limit neuronal death

Neurons die en masse when the spinal cord is injured or when a person suffers a stroke. Researchers of the Max Delbrueck Center for Molecular Medicine (MDC) Berlin-Buch, Germany, and of Aarhus University, Denmark, have unraveled the molecular mechanism which causes the death not only of damaged neurons, but also of healthy nerve cells.

In animal experiments, they have now been able to demonstrate that neuronal cell death can be reduced when the gene of one the key players in this process is knocked out. The research results of Professor Thomas E. Willnow (MDC) and Professor Anders Nykjaer (Aarhus University) have been published online in Nature Neuroscience (DOI: 10.1038/nn2000)*. Now they are working on the development of drugs to limit neuronal cell death after spinal cord injury.

After injury, neurons secrete the precursor protein proNGF. (The abbreviation stands for pro-nerve growth factor). ProNGF binds to a receptor called sortilin, situated on the surface of all neurons whether they are injured or not.

As soon as proNGF binds to sortilin, it induces the lethal cascade. This explains why proNGF not only promotes the death of damaged neurons, but also of the surrounding healthy tissue.

In the embryo, inducing death of neurons is an absolutely necessary process. It keeps the developing nervous system under control. For the adult organism, however, this “deadly activity” is disastrous.

It not only causes the massive death of injured neurons, but also kills the healthy nerve cells. “This shows that neurons not only die because of the initial insult, such as lack of oxygen in stroke. To a large extent, nerve cells also die as a consequence of proNGF’s binding to sortilin,” Dr. Willnow explains.

With a technology for which three scientists in the US and UK have just won the Nobel Prize, Dr. Willnow and Dr. Nykjaer bred mice in which they silenced the gene for sortilin. They could show that in knock-out mice lacking sortilin, most neurons survive spinal cord injury. By contrast, in mice still expressing sortilin on the surface, up to 40 percent of the affected nerve cells are lost.

http://www.mdc-berlin.de

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Small brain-penetrating molecule offers hope for treating aggressive brain tumors