Comprehensive gene atlas underlying drug addiction

Using an integrative meta-analysis approach, researchers from the Center for Bioinformatics at Peking University in Beijing have assembled the most comprehensive gene atlas underlying drug addiction and identified five molecular pathways common to four different addictive drugs.

This novel paper appears in PLoS Computational Biology on January 4, 2008.

Drug addiction is a serious worldwide problem with strong genetic and environmental influences. So far different technologies have revealed a variety of genes and biological processes underlying addiction. However, individual technology can be biased and render only an incomplete picture. Studying individual or a small number of genes is like looking at pieces of a jigsaw puzzle - only when you gather most of the pieces from different places and arrange them together in an orderly fashion do interesting patterns emerge.

The team, led by Liping Wei, surveyed scientific literature published in the past 30 years and collected 2,343 items of evidence linking genes and chromosome regions to addiction based on single-gene strategies, microarray, proteomics, or genetic studies. They made this gene atlas freely available in the first online molecular database for addiction, named KARG (http://karg.cbi.pku.edu.cn), with extensive annotations and friendly web interface.

Assembling the pieces of evidence together, the authors identified 18 molecular pathways that are statistically enriched in the addiction-related genes. They then identified five pathways that are common to addiction to four different substances. These common pathways may underlie shared rewarding and response mechanisms and may be targets for effective treatments for a wide range of addictive disorders.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Engineered virus-like particles evolve for superior gene delivery efficiency