Discovery of cellular mechanisms that lead to in insulin resistance in diabetics

Researchers at the Swedish medical university Karolinska Institutet have in collaboration with researchers from Finland, China, Japan and the US discovered new cellular mechanisms that lead to in insulin resistance in people with diabetes.

The results are published in the scientific journal Cell.

Type 2-diabetes is a chronic disease resulting from a reduction in insulin-production from the pancreas or an inability of other tissues in the body to respond adequately to the produced insulin, so called insulin resistance. This leads to increased blood sugar, which in turn leads to a worsening of the insulin resistance, increasing the risk of developing many serious diabetes-associated complications.

An international research team, led by Professor Juleen R. Zierath at Karolinska Institutet in Stockholm have identified previously unknown molecular mechanisms by which elevated blood sugar leads to impaired insulin sensitivity in people with diabetes. The research team identified a ‘fat-burning' gene, the products of which are required to maintain the cells insulin sensitivity. They also discovered that this gene is reduced in muscle tissue from people with high blood sugar and type 2-diabetes. In the absence of the enzyme that is made by this gene, muscles have reduced insulin sensitivity, impaired fat burning ability, which leads to an increased risk of developing obesity.

“The expression of this gene is reduced when blood sugar rises, but activity can be restored if blood sugar is controlled by pharmacological treatment or exercise”, says Professor Juleen Zierath. “Our results underscore the importance of tight regulation of blood sugar for people with diabetes.”

http://ki.se

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Novel glucose-sensitive membrane offers improved insulin regulation for diabetic patients