Potential new target for multiple sclerosis therapy

Researchers demonstrate both genetic and pharmaceutical evidence for the role of a protein called collagenase-2 in the development of multiple sclerosis (MS), providing a potential new way to combat this debilitating disease.

Collagenase-2 is a member of a protein family called matrix metalloproteinases (MMPs, collagenase-2 is MMP8), a large group of enzymes that break down collagen and other components of the body's connective tissue. MMPs have been implicated in contributing to MS by degrading the tissue that maintains the blood-brain barrier, thus allowing unwanted cells to invade and break down nerves. In fact, MMPs are found in elevated amounts in the blood and spinal fluid of diseased individuals.

Using a mouse model of MS, Carlos Lopez-Otin and colleagues performed two analyses on MMP8 to determine how relevant this protein is to the disease. First, they developed mutant mice deficient in the gene for MMP8 and found that these mice had a fewer invading cells in the brain, fewer damaged nerves, and a general improvement in their clinical profile.

They also gave diseased mice a drug that blocked MMP8 activity and found that this, too, could reduce the severity of disease symptoms. Taken together, these promising findings provide the first causal evidence for MMP8 in the development of MS, and offer a new therapeutic target.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Identical twins study uncovers insights into multiple sclerosis mechanisms