New molecular imaging techniques aim at detection of earliest steps of disease development

An emerging discipline of noninvasive cardiac imaging, molecular imaging, has evolved constantly in the last few years and is increasingly being translated from the preclinical to the clinical level.

Molecular imaging allows for unique insights into specific disease mechanisms and holds great promise to change the practice of cardiovascular medicine by facilitating early disease detection, establishment of novel therapies, and selection of patients for treatment based on their individual disease biology (the paradigm of "personalized medicine").

Several different imaging techniques can be used for detection of molecular probes, including nuclear imaging, magnetic resonance imaging, ultrasound and optical imaging, although nuclear imaging techniques, and especially positron emission tomography (PET) are currently most promising because of their superior sensitivity for detection of small amounts of highly specific radioactive molecular probes in the body. The new generation of hybrid imaging system, which integrate PET with X-ray computed tomography (CT) will further refine the application of molecular imaging probes, because co registration with a high-resolution CT will allow for better localization of the specific molecular signal from PET.

Applications that are currently being tested in early clinical stages include the identification of individuals at risk for atherosclerotic plaque rupture, identification of risk for development of heart failure and/or fatal ventricular arrhythmia, and monitoring of novel therapies such as stem cell therapy or gene delivery.

The field is still in its infancy and strong translational efforts need to continue to make it a clinical reality in the next years. But there is a strong notion that, in the future era of personalized molecular medicine, molecular imaging will play a key role for guidance of clinical decision making based on individual disease biology.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
AI models redefine TIL scoring in breast cancer but face challenges in real-world validation