Unsuccessful drug against anxiety opens a novel gateway for the treatment of cancer

According a new study, unsatisfying drug for anxiety reveals scientists a promising novel anti-cancer drug target.

Cancer cells have multiple ways to avoid apoptosis, programmed cell death the means by which organisms deal with defective cells. One defense is to produce quantities of phosphatic acid, a phospholipid constituent of cellular membranes. Unlike other phospholipids, phosphatidic acid also acts as a signaling molecule for cells promoting cellular growth and preventing apoptosis. Finnish and Danish researchers have now shown that phosphatidic acid may well be a target molecule for novel anti-cancer drugs.

Siramesine is a drug molecule developed and synthesized by Lundbeck A/S for the treatment of anxiety. Its development was discontinued due to unsatisfying efficacy in clinical trials in 2002. Later professor Marja Jäättelä and co-workers at the Danish cancer institute discovered that siramesine effectively inhibits the growth of both cultured cancer cells as well as solid tumors in mice. Siramesine is known to bind sigma-receptors, which physiological role remains unknown, on the cellular surface and this interaction was also believed to underlie its anti-tumor actions.

Researchers at the University of Helsinki, Finland, lead by Professor Paavo Kinnunen, studied the interaction of this drug with different phospholipids using biophysical methods and different model cellular membranes. In addition a computer simulation was performed as collaboration with MEMPHYS, Odense, Denmark, to further their understanding of this interaction.

"The key finding of our study was that siramesine avidly and specifically binds to phosphatidic acid", says MD Mikko Parry from Helsinki Biophysics & Biomembrane group at the Institute of Biomedicine, University of Helsinki.

"Importantly, this is the first time it's shown that a lipid second messenger can act as a drug target: it is a totally new mechanism of action and constitutes a novel paradigm for developing new, more effective anti-cancer drugs."

Mikko J. Parry, Juha-Matti I. Alakoskela, Himanshu Khandelia, Subramanian Arun Kumar, Marja Jäättelä, Ajay K. Mahalka, and Paavo K.J. Kinnunen: High affinity small molecule-phospholipid complex formation: binding of siramesine to phosphatidic acid. Journal of the American Chemical Society (Web Release Date: 04-Sep-2008; (Article) DOI: 10.1021/ja800516w)

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Golgi apparatus plays crucial role in enhancing T-cell function against cancer