MG53 protein found to be a key initiator of membrane repair in damaged tissue

Researchers at UMDNJ-Robert Wood Johnson Medical School have identified the protein MG53, as a key initiator of membrane repair in damaged tissue.

The study, released in Nature Cell Biology, is the first to specifically pinpoint a protein responsible for promoting cell repair. Led by Jianjie Ma, PhD, professor of physiology and biophysics, the discovery has the potential to be used as a therapeutic mechanism to repair tissue in humans, transforming treatment for patients who suffer from severe complications of disease and aging. This work was performed in collaboration with Professor Hiroshi Takeshima at Kyoto University, Japan.

"Membrane repair and remodeling is an essential process that maintains cell integrity and mediates efficient cellular function," said Dr. Ma. "Our research shows that the protein MG53 initiates the repair mechanism in damaged tissue. Through further study, we hope to determine if MG53 can be used as a treatment in repairing human tissue that is damaged by common health conditions, including cardiovascular disease and aging."

According to Dr. Ma, human cells are continuously injured and naturally repaired through the life span, such as micro tears caused as muscles contract within the body during normal everyday activities. However, diseases such as diabetes, cardiovascular disorders, muscular dystrophy, and even aging compromise the method in which the body repairs its own tissues, resulting in severe damage. The identification of MG53 provides hope that scientists can create therapies to treat or even prevent this damage. Through further research, Dr. Ma will study the potential for creating therapies for burn treatment, repairing sports injuries and peripheral wounds resulting from diabetes.

The research was supported by grants from the National Institutes of Health, the Ministry of Education, Science, Sports and Culture of Japan and the American Heart Association.

http://rwjms.umdnj.edu/

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
The crucial role of 'chaperones' in maintaining neuronal function