Clotrimazole drug used to treat skin conditions is a marine pollutant

Clotrimazole is a common ingredient in over-the-counter skin creams. Recent results from the University of Gothenburg, Sweden, now show that it is associated with major environmental risks. "The pharmaceuticals and chemicals in everyday use form a mixture in the ocean that has a direct impact on the growth and reproduction of organisms", says scientist Tobias Porsbring.

When Euorpean authorities assess environmental risks, they often do so for one chemical at a time. Recent research, however, shows that the hazardous chemicals that humans spread in the environment do not work alone. Chemicals, drugs and personal-care products that accompany wastewater often end up in the oceans, where they form a "cocktail" of chemicals. This “cocktail-effect” may be more harmful than the individual chemicals alone.

Environmental risks

Scientist Tobias Porsbring at the Department of Plant and Environmental Sciences at the University of Gothenburg has studied natural communities of microalgae along the Swedish west coast. He presents results in his doctoral thesis that show how the use of a common agent against skin fungi, clotrimazole, is associated with major environmental risks. "The levels of clotrimazole that are measured in the environment affect the synthesis of sterols in the algae, and these are important in several functions in the algal cells. The growth and reproduction of the algae are disturbed. Single-cell microalgae are the fundamental basis of the ocean food chain, and the use of clotrimazole thus may affect the complete ocean ecosystem", says Tobias Porsbring.

"Cocktail effect" on microalgae

Clotrimazole, however, does not act alone in the ocean ecosystem. Many other substances are often found in the oceans, including propranolol (a drug to lower blood pressure), triclosan (an anti-bacterial agent commonly found in soap and deodorants), fluoxetine (an anti-depressant pharmaceutical) and zinc pyrithione (found in anti-dandruff shampoos). The results that Tobias Porsbring presents show that a mixture of such compounds forms a "cocktail effect" that has a direct impact on the growth of the microalgal community.

Theoretical model

The fact that low levels of a pollutant that are insufficient to cause a detectable effect may contribute to a larger, combined effect with other chemicals emphasises that cocktail effects are a real environmental problem. Despite this, assessments of environmental risk are usually carried out on one chemical at a time. Through knowledge of environmental levels and the impact of individual chemicals Tobias Porsbring's thesis launch a theoretical model for calculating how cocktail effects arise. This model can be used to obtain highly reliable estimates of the composite environmental risk from mixtures of chemicals in the ocean ecosystem.

Full bibliographic information: This doctoral thesis was produced as a collection of papers. Paper I. Porsbring T, Arrhenius Å, Backhaus T, Kuylenstierna M, Scholze M, Blanck H (2007) The SWIFT periphyton test for high-capacity assessments of toxicant effects on microalgal community development. Journal of Experimental Marine Biology and Ecology 349:299-312

Paper II. Porsbring T, Blanck H, Tjellström H, Backhaus T (2009) Toxicity of the pharmaceutical clotrimazole to marine microalgal communities. Aquatic Toxicology 91:203- 211

Paper III. Porsbring T, Backhaus T, Johansson P, Kuylenstierna M, Blanck H. Mixture toxicity from PSII inhibitors on microalgal community succession is predictable by Concentration Addition.

Paper IV. Backhaus T, Porsbring T, Arrhenius Å, Blanck H. Single substance and mixture toxicity of 5 pharmaceuticals and personal care products to marine periphyton communities.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Plant polyphenols: The secret to living longer and healthy aging?