Researchers identify mechanism by which an anti-TNF therapy impairs host defense against tuberculosis

The life of many individuals with inflammatory diseases such as rheumatoid arthritis has been dramatically improved by treatment with drugs that target the protein TNF, so called anti-TNF therapies.

However, anti-TNF therapies can decrease the ability of the immune system to fight infections and have been associated with an increased incidence of tuberculosis. By studying the immune cells of patients before and after treatment with the anti-TNF therapy infliximab Steffen Stenger and colleagues, at the University Hospital of Ulm, Germany, have been able to identify a mechanism by which an anti-TNF therapy impairs host defense against tuberculosis.

In the study, a subset of CD8-expressing effector memory immune T cells characterized by expression of the proteins CD45RA and granulysin (which the authors termed CD45RA+ effector memory CD8+ T cells) were identified as having a major role in targeting the bacterium that causes tuberculosis (Mycobacterium tuberculosis). Furthermore, numbers of CD45RA+ effector memory CD8+ T cells were reduced in patients following treatment with infliximab. As this correlated with a decreased ability of peripheral blood from the patients to kill M. tuberculosis, the authors conclude that the loss of this immune cell subset provides a mechanism to explain the reactivation of latent tuberculosis infection in some individuals being treated with infliximab.

In an accompanying commentary, Elizabeth Miller and Joel Ernst, at New York University School of Medicine, New York, discuss the clinical importance of these data and highlight some of the possibilities that they raise.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
TB pathogen's surprising growth mechanism challenges bacterial biology