Apr 23 2009
Cannabis Science, Inc., Dr. Robert Melamede, PhD., Director and Chief Science Officer, reported to the Board on the current state of research into the use of natural plant cannabinoids to reduce the spread of drug-resistant bacteria, including methicillin-resistant Staphyloccus aureus (MRSA), and the prospects for development of topical whole-cannabis treatments.
According to studies published in the Journal of the American Medical Association and by the Center for Disease Control in 2007, MRSA is responsible for more than 18,500 hospital-stay related deaths each year, and increased direct healthcare costs of as much as $9.7 billion.
Dr. Melamede stated, "Research into use of whole cannabis extracts and multi-cannabinoid compounds has provided the scientific rationale for medical marijuana's efficacy in treating some of the most troubling diseases mankind now faces, including infectious diseases such as the flu and HIV, autoimmune diseases such as ALS (Lou Gehrig's Disease), multiple sclerosis, arthritis, and diabetes, neurological conditions such as Alzheimer's, stroke and brain injury, as well as numerous forms of cancer. One common element of these diseases is that patients often suffer extended hospital stays, risking development of various Staphyloccus infections including MRSA. A topical, whole-cannabis treatment for these infections is a functional complement to our cannabis extract-based lozenge."
Investigators at Italy's Universita del Piemonte Orientale and Britain's University of London, School of Pharmacy reported in the Journal of Natural Products that five cannabinoids - THC, CBD, CBG, CBC, and CBN - "showed potent antibacterial activity" and "exceptional" antibacterial activity against two epidemic MRSA occurring in UK hospitals. The authors concluded: "Although the use of cannabinoids as systemic antibacterial agents awaits rigorous clinical trials, … their topical application to reduce skin colonization by MRSA seems promising. … Cannabis sativa … represents an interesting source of antibacterial agents to address the problem of multidrug resistance in MRSA and other pathogenic bacteria."