New insights into immune exhaustion

A main reason why viruses such as HIV or hepatitis C persist despite a vigorous initial immune response is exhaustion. The T cells, or white blood cells, fighting a chronic infection eventually wear out.

Researchers at Emory Vaccine Center have demonstrated that exhaustion is driven by how the immune system detects infecting viruses.

To recognize the presence of a viral infection, T cells must be presented with bits of viral protein in a molecular frame supplied by other cells in the body -- called MHC (major histocompatibility complex) class I molecules.

In mice infected by lymphocytic choriomeningitis virus (LCMV), T cells became more or less exhausted depending on how much properly framed viral protein was available.

Insights from the research could guide efforts to revive the immune system in people with chronic viral infections. The results are published online this week in the Proceedings of the National Academy of Sciences.

Working with Vaccine Center director Rafi Ahmed, PhD, postdoctoral fellow Scott Mueller, PhD, examined the effects of limiting what kind of cells could display the viral antigens.

Ahmed is professor of microbiology and immunology at Emory University School of Medicine and a Georgia Research Alliance Eminent Scholar.

By performing bone marrow transplants on genetically engineered mice, Mueller created mice with MHC class I molecules on blood and immune system cells but missing from other cells such as nerve cells and connective tissue. LCMV infects both cells that come from bone marrow and cells that don't. But the roles each type of cell plays in communicating the infection to the immune system is different.

"We were trying to sort out which of several factors contribute to T cell exhaustion, such as viral antigen, inflammation and where the immune system encounters the virus," Mueller says. "What came out of these experiments allowed us to answer a broad question: the role of antigen in driving exhaustion."

When injected with LCMV, the altered mice had more energetic and responsive T cells early during the infection. But later, the altered mice had much higher levels of virus and more exhausted T cells. This contrast demonstrates how the level of antigen present is the motor behind immune exhaustion during the chronic infection.

"Early on, the T cells were healthier because they saw less antigen, and only saw it on cells that came from bone marrow," Mueller says. "But later, the immune system had trouble getting rid of the virus because the T cells couldn't recognize infection in cells that were not able to present the viral antigens."

Comments

  1. kotb elgamasy kotb elgamasy Egypt says:

    That is great we hope that this will help them to win the battle against this virus as there are a lot of suffers from hepatitis C virus worldwide and specially in Egypt

    For me this is very important to hear about as I'm a pharmacist
    and also someone I know has been infected with this virus
    so hope researchers and scientists make a vaccine to this virus and also put an end in front of its rapid distribution
      

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New vaccine shows potential in preventing recurrence of triple-negative breast cancer