Discovery of gene that regulates tumors in neuroblastoma

Virginia Commonwealth University researchers have identified a gene that may play a key role in regulating tumor progression in neuroblastoma, a form of cancer usually found in young children. Scientists hope the finding could lead to an effective therapy to inhibit the expression of this gene.

According to Paul B. Fisher, M.Ph., Ph.D., who is the first incumbent of the Thelma Newmeyer Corman Endowed Chair in Cancer Research with the VCU Massey Cancer Center, and Seok-Geun Lee, Ph.D., assistant professor in the VCU Department of Human and Molecular Genetics, co-lead investigators of the study, the team has shown that astrocyte elevated gene-1, AEG-1, a cancer promoting gene, is frequently activated in neuroblastoma.

In the study published online in the May issue of the journal Oncogene, Fisher, Lee and their team found that the elevated expression of AEG-1 makes cancer cells highly aggressive and resistant to factors that may influence cell suicide, and that loss of AEG-1 reduces the tumor-causing properties of highly aggressive neuroblastoma cells. Additionally, the expression of AEG-1 was significantly elevated in six of 10 neuroblastoma patient-derived samples compared to normal peripheral nerve tissues.

Furthermore, they have shown the potential correlation between AEG-1 and MYCN in neuroblastoma. MYCN is a known genetic determinant of neuroblastoma and elevated levels have been observed in one third of neuroblastoma patients. MYCN is linked to aggressive tumor formation and poor clinical outcome.

"We believe that activation of AEG-1 in addition to MYCN is critical to the development and progression of neuroblastoma. This works shows that AEG-1 plays a crucial role in the development and progression of neuroblastoma through activating important signaling pathway and induction of MYCN," said Fisher, who also is professor and chair of the Department of Human and Molecular Genetics, and director of the VCU Institute of Molecular Medicine in the VCU School of Medicine.

"In addition, we have shown that AEG-1 could be a potential prognostic marker for neuroblastoma and a potential target for novel therapeutic strategies for neuroblastoma patients," he said.

The team has already begun analyzing the expression of AEG-1 and its relationship with MYCN status in neuroblastoma patient samples. Through collaboration with John Maris, M.D., chair of neuroblastoma research at the University of Pennsylvania School of Medicine, the team will acquire data from approximately 2,000 neuroblastoma patient tissues. They will also test if inactivation of AEG-1 using small interfering RNA could be a therapeutic intervention for neuroblastoma through second collaborative effort with Bill Weiss, M.D., associate professor of Neurology at the University of California, San Francisco.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Engineered virus-like particles evolve for superior gene delivery efficiency