Potential new treatment for Alzheimer’s

Indeed, these carriers tend to develop the disease later than others, but when that happens, it progresses more rapidly and does not respond to medication. Therefore, the bottom line is that carriers of the mutated gene have a greater risk than others for disease progression.

The reason for this anomalous situation has been a puzzle for a long time, but the studies by the Hebrew University scientists solved it by finding the explanation for this increased risk, thereby offering as well a possible new therapeutic solution.

At the Wolfson Center for Structural Biology at the Hebrew University, the researchers found that the mutation in the BChE-K gene damages the very end, or tail, of the resultant mutant enzyme protein. This tail is the part of BChE which is important for protection from the Alzheimer's disease plaques. It does this by interacting with the Alzheimer's disease β-amyloid protein and preventing it from precipitating and forming those brain plaques which are the neuropathological hallmark of this disease.

To compare the normal protein to the K mutant, the researchers used synthetic tails of the normal and the K proteins, as well as engineered human BChE produced in the milk of transgenic goats at a U.S. company, Pharmathene. The goat- produced protein is prepared at Pharmathene for the U.S. military as protection from nerve gas poisoning (a result of earlier research at the Hebrew University). It was much more stable and efficient than the mutant protein, which suggests that the BChE-K carriers’ susceptibility to Alzheimer’s could be substantially improved by treating them with the engineered normal protein that is produced in the milk of the transgenic goats.

The current study was the last part in the Ph.D. work of Dr. Erez Podoly, now a post- doctoral fellow with the Nobel laureate Roger Kornberg at Stanford University. Podoly was the joint student of Prof Oded Livnah and Prof. Hermona Soreq and won a National Eshkol fellowship in Biotechnology to perform this work as well as a Kaye Innovation Award at the Hebrew University. Others who contributed to this study included Dr, Debbie Shalev and Dr. Ester Bennett from the Silberman Institute of Life Sciences, Harvey Wilgus from Pharmathene, and Dr Einor Ben-Assayag and Shani Shenhar- Tsarfati, a Ph.D. student, both from the Sourasky Medical Center in Tel aviv, where the Israeli carriers of BChE-K were identified.

The project is patented and is available for licensing by the Yissum Research Development Company of the Hebrew University of Jerusalem.

An article by the researchers on this work was recently selected as a Journal of Biological Chemistry (JBC) Paper of the Week and featured on the cover of the publication.

Full bibliographic information: Journal of Biological Chemistry (JBC)

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Maternal medications linked to changes in protein and fat levels in human milk