Genetic link to ovarian cancer found

Scientists have located a region of DNA which - when altered - can increase the risk of ovarian cancer according to research published in Nature Genetics today.

An international research group led by scientists based at the Cancer Research UK Genetic Epidemiology Unit, at the University of Cambridge and UCL (University College London) searched through the genomes of 1,810 women with ovarian cancer and 2,535 women without the disease from across the UK. They analysed 2.5 million variations in DNA base pairs - the letters which spell out the genetic code - to identify common spelling errors linked to ovarian cancer risk.

The scientists identified the genetic 'letters'- called single nucleotide polymorphisms (SNPs) - which when spelt slightly differently increase ovarian cancer risk in some women. This is the first time scientists have found a SNP linked uniquely to risk of ovarian cancer and is the result of eight years of investigations. With the help of the international Ovarian Cancer Association Consortium (OCAC), they then looked at more than 7,000 additional women with ovarian cancer and 10,000 women without disease from around the world to confirm this finding.

The region of risk DNA is located on chromosome nine - there are 23 pairs of each chromosome in humans, one of each pair inherited from each parent. The scientists estimate that there is a 40 per cent increase in lifetime risk for women carrying the DNA variation on both copies of chromosome nine compared with someone who doesn't carry it on either chromosome. The risk for women carrying the variation on both chromosomes is 14 in 1000 - compared with ten in 1000.

Approximately 15 per cent of women in the UK population carry two copies of the variant DNA.

The lifetime risk for a woman carrying the DNA variant on one copy of the chromosome is increased by 20 per cent from ten in 1000 to 12 in 1000. Approximately 40 per cent of women in the UK carry one copy.

Senior author Dr Simon Gayther, whose work is supported by Cancer Research UK and The Eve Appeal charity which fundraises for the gynaecological cancer research team based at UCL, said: "The human DNA blueprint contains more than 10 million genetic variants. These are part and parcel of our characteristics and make-up - but a handful will also increase the chances of some women getting ovarian cancer and we have found the first one of these.

"There is now a genuine hope that as we find more, we can start to identify the women at greatest risk and this could help doctors to diagnose the disease earlier when treatment has a better chance of being successful."

Dr Andrew Berchuck, head of the international Ovarian Cancer Association Consortium steering committee, said: "This study confirms that ovarian cancer risk is partly determined by genetic variants present in a large number of women. This initial discovery and others that will likely follow in the future lay the groundwork for individualised early detection and prevention approaches to reduce deaths from ovarian cancer."

Ovarian cancer is the fifth most common cancer in women in the UK with around 6,800 new cases diagnosed each year in the UK - 130 women every week. It is the fourth most common cause of cancer death in women in the UK with around 4,300 deaths from the disease in the UK each year.

BRCA1 and BRCA2 are high risk genes which cause breast cancer and are already known to significantly increase the risk of ovarian cancer- but faults in these genes are rare and probably cause less than five per cent of all cases of ovarian cancer.

Lead author, Professor Dr Paul Pharoah, a Cancer Research UK senior research fellow at the University of Cambridge, said: "We already know that people with mistakes in the BRCA1 and BRAC2 genes have a greater risk of ovarian cancer - they don't account for all of the inherited risk of the disease. "It is likely that the remaining risk is due to a combination of several unidentified genes - which individually carry a low to moderate risk. Now we have ticked one off, the hunt is on to find the rest."

**Rose Lammy, the mother of David Lammy MP for Tottenham and Minister for Higher Education and Intellectual Property, died of ovarian cancer in 2008. Rose Lammy's DNA sample was included in the study, and she carried both risk alleles of the new genetic marker that researchers have identified.

David Lammy said: "I am pleased that Mum's sample was included in this study as it is one step towards earlier diagnosis of ovarian cancer when treatment is more successful. We now know the fact that she had this altered DNA meant that her lifetime risk had risen from 10 in 1,000 to 14 in 1,000, an increase of 40 per cent compared to those women who don't carry this DNA variation. Dr Lesley Walker, director of cancer information at Cancer Research UK, added: "This is an important discovery. Our researchers have worked as part of a huge collaboration to establish the regions of DNA that can increase someone's risk of developing ovarian cancer. "This research paves the way for scientists to discover even more genes linked to ovarian cancer and could lead to new approaches to treat or prevent the disease - help doctors manage women who are at increased risk."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Groundbreaking technology converts cancer cells into normal cells