Researchers measure diffusion coefficient of a protein in a primary cilium

A team of researchers led by Peter Calvert (SUNY Upstate Medical University) has, for the first time, measured the diffusion coefficient of a protein in a primary cilium and in other major compartments of a highly polarized cell. The study appears in the March issue of the Journal of General Physiology.

Transport of proteins to and from cilia is crucial for normal cell function and survival, and interruption of transport has been implicated in degenerative diseases and neoplastic diseases, such as cancer. Researchers believe that cilia impose selective barriers to the movement of proteins, but because of the narrow and complex structure of cilia-with diameters near or below the resolution of light microscopy-this hypothesis has been difficult to examine.

Using confocal and multiphoton microscopy, Calvert and his team-including William Schiesser (Lehigh University) and Edward Pugh (University of California, Davis)-measured the mobility of PAGFP (photoactivatable green fluorescent protein) in the connecting cilium (CC) of retinal rod photoreceptors in frogs, as well as in the subcellular compartments bridged by the CC. In addition, the team measured the overall time for the protein concentration to equilibrate within and between compartments.

The results establish that the CC does not pose a major barrier to protein diffusion within the rod cell, but that the axial diffusion in each of the rod's compartments is substantially delayed relative to that in aqueous solution.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Scientists discover new target for treating aggressive brain cancer