Researchers develop system to forecast ash cloud evolution from Iceland's Eyjafjallajökull volcano

Researchers at the Universidad Politécnica de Madrid's Facultad de Informática have developed a system to forecast the evolution of the ash cloud from Iceland's Eyjafjallajökull volcano.

The system is based on an estimate of the volcano's daily emissions gathered using OMI, GOME-2 and SCIAMACHY satellite observations, and is available for consultation over the Internet free of charge. These emissions vary on a daily basis, although, for forecasting purposes, the emissions observed on the satellites are assumed to be constant during the forecasting or model simulation period. This is the biggest source of uncertainty, as it is not known exactly how the volcano's emissions will evolve in the future.

The system combines information on the volcano's behaviour, gathered twice a day from the above satellites, with environmental information, like wind speed and direction, air humidity, etc., that influences the evolution of the volcanic ash cloud.

The system was developed based on a European-wide air quality forecasting system, also built at the Facultad de Informática. This system has been operational since 2008 and is based on MM5 (NCAR, US) and CMAQ (US EPA) models. For this new undertaking, satellite-gathered information on the emissions from the volcano has been added to the model.

Prognosis

Prediction is based on the assumption that the emitted volcanic ash cloud rises from 4.5 to 8 kilometres into the air. The system analyses the information as sulphur dioxide emissions (SO2). The daily calculations are made from the above satellite observations, and the results are visualized at three levels using Dobson units.

The Dobson unit (DU) is a way of expressing the quantity of ozone present in the Earth's atmosphere, specifically the stratosphere. In actual fact, it is a measure of the thickness of the ozone layer. In the case of the volcano, this measure is used to determine the density of the ash cloud.

The forecast is subject to some uncertainty because there is no way of ascertaining how the volcano will behave from one day to the next. However, the high-quality software model used has been providing forecasts of ozone and other pollutants stipulated by European Directives (and the respective national legislation) for several years based on MM5 since the year 2000 and CMAQ since 2007.

The system has been operating experimentally for several weeks and is run by the Environmental Software and Modelling Group (GMSMA) led by Prof. Roberto San José.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
SARS-CoV-2 evolves differently in the brain, revealing critical insights into viral tropism